期刊文献+

C-RAN网络中基于稀疏性的预测矩阵求解算法

A Sparsity-based Prediction Matrix Solving Algorithm for C-RAN Networks
下载PDF
导出
摘要 在C-RAN(Centralized,Cooperative,Cloud Radio Access Network)无线网络基于转移矩阵的负载预测方法中,虽然该预测矩阵具有稀疏特性,但是现有的技术缺乏对稀疏特性加以利用,从而造成计算复杂。针对此问题,提出了一种基于稀疏性的预测矩阵求解算法。该算法对网络状态转移矩阵进行分块迭代,每次等分4块,并分别定义4块矩阵的偏移量。当属于同一行的块矩阵的偏移量有一个是零矩阵时,直接得出所求矩阵对应块的元素全部为零,然后进行下一次迭代;当属于同一行的块矩阵偏移量都不为零矩阵时,通过对矩阵方程组变形处理,转换成迭代格式,然后分块处理。最后,结合仿真定量分析稀疏矩阵稀疏度的临界值问题,给出了稀疏度与计算量之间的关系,并证明了其合理性。仿真结果表明,所提算法能够在不影响预测准确度前提下,降低复杂度。 In load matrix based load prediction method in the C-RAN(Centralized,Cooperative,Cloud Radio Access Network)wireless network,although the prediction matrix has sparse characteristics,the existing technologies lack the use of sparse features,resulting in computational complexity.For this issue,an algorithm for predicting matrix based on sparsity is proposed.The algorithm performs block iteration on the network state transition matrix,and divides 4 blocks each time,and defines the offset of 4 matrices respectively.When one of block matrix belonging to the same column is tested as a zero matrix,it is directly derived that all the elements of the corresponding block of the requested matrix are zero,then the next iteration is proceeded;When none of the block matrices belonging to the same column has been checked out to be zero matrices,by transforming the matrix equations,it is converted into an iterative format and then processed in blocks.Finally,the critical value of sparse matrix sparsity is quantitatively analyzed by simulation,and the relationship between the sparsity and the computation is given and its rationality is proved.Simulation shows that the algorithm can reduce the computational complexity without influencing the calculation accuracy.
作者 旷灵 刘占军 谭新 刘洋 KUANG Ling;LIU Zhanjun;TAN Xin;LIU Yang(Chongqing Key Laboratory of Mobile Communications Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《电讯技术》 北大核心 2019年第3期255-259,共5页 Telecommunication Engineering
基金 国家高技术研究发展计划(863计划)项目(2014AA01A701) 重庆邮电大学博士基金启动项目
关键词 C-RAN网络 大规模稀疏矩阵 矩阵分块 稀疏度 C-RAN large-scale sparse matrix matrix partition sparsity
  • 相关文献

参考文献6

二级参考文献42

  • 1方文波.线性方程组的矩阵求解算法[J].大学数学,2004,20(5):91-96. 被引量:9
  • 2西安交通大学.电力系统计算[M].北京:水利电力出版社,1978..
  • 3陈珩,张道泉,秦翼鸿编.电力系统[M].北京:电力工业出版社,1979.
  • 4文矩,李林川.电力系统最优运行[M].西安:西安交通大学出版社,1987.
  • 5MOHAPATRA S. K. Integrated planning for next generation networks [ C]//Proc. IEEE International Symposium on Integrated Network Management Workshop. New York : IEEE Press,2009:205-210.
  • 6WANG S J ,GUO J. On-line traffic forecasting of mobile communica-tion system [ J]. Pervasive Computing Singnal Processing and Appli- cations,2010(32) :97-100.
  • 7SIVAKUMAR R,ASHOK K E. Prediction of traffic load in wireless network using time series model[ C]//Proc. 1EEE Process Automa- tion, Ccmtrol and Computing Conference. Coirnbatore: IEEE Press, 2011:1-6.
  • 8GAO J W,LENG Z W,QIN Y,et al. Short-term traffic flow forecas- ting model based on wavelet neural network [ C]//Proc. fEEE 25th Chinese Control and Decision Conference. Guiyartg: IEEE Press, 2013:5081-5084.
  • 9ZHANG R, CA1 Y P, FU X A. A network traffic prediction model based on recurreni wavelet neural network [ C ]//Proc. IEEE Com- puter Science and Network Technology Conference. Changchun: IEEE Press,2012:1630-1633.
  • 10ZHANG X L, ZHU T, LUO L, et al. Forecasting emergency depart- ment patient flow using Markov chain [ C ]// Proc. IEEE ServiceSystems and Service Management Conference. Hong Kong: IEEE Press, 2013 : 278 -282.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部