期刊文献+

一种可扩展的深度神经网络机器翻译Service架构 被引量:2

A scalable deep neural network machine translation service
下载PDF
导出
摘要 提出了一种可扩展的基于深度神经网络方法的在线翻译系统架构方法,采用GPU和CPU混合解码的后端部署方法来提高系统的并发能力,降低系统延迟.实验结果表明,所提出的系统架构方法相比于只使用GPU或CPU架构,系统并发能力更强,而响应延迟相对较低.同时系统的架构方法可以方便地扩展到多服务器架构中,整体上提高系统的性能. Neural network machine translation,which is a new machine translation method,has become the mainstream of machine translation research.In this paper,we propose an extensible online translation system architecture based on deep neural network,which builds the system backend through the method of GPU and CPU mixed decoding to improve the concurrency ability of the system,and reduce system delay.Experimental results show that the proposed system architecture method is effective.Compared to pure GPU or CPU architecture,the system has higher concurrency ability and the response delay is relatively low.At the same time,the architecture can be extended to the multi-server architecture and improve the performance of the system further.
作者 张巍 林飞飞 梁镇爽 黄振 ZHANG Wei;LIN Feifei;LIANG Zhenshuang;HUANG Zhen(College of Information Science and Engineering,Ocean University of China,Qingdao 266100,China;Global Tone Communication Technology (Qingdao) Co. ,Ltd. ,Qingdao 266061,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第2期184-188,共5页 Journal of Xiamen University:Natural Science
关键词 神经机器翻译 在线翻译 混合解码 neural machine translation service online translation hybrid decoding
  • 相关文献

参考文献2

二级参考文献49

  • 1Haifeng Wang, Zhanyi Liu, Hua Wu. Semi-Structure d Example Based Machine Translation[M]. Frontiers of Content Computing: Research and Application. Sun Maosong and Chen Quuxiu (Eds.), Tsinghua University Press, 2007:1-9.
  • 2Hua Wu, Haifeng Wang, Zhanyi Liu et al. Improving Translation Memory with Word Alignment Informa- tion[C]//Proceedings of MT SUMMIT X. Phuket Is-land, Thailand, 2005: 313-320.
  • 3Peter F. Brown, John Cocke, Stephen A. Della Pi- etra, Vincent J. Della Pietra, Fredrick Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin.A Statistical Approach to Machine Translation [J]. Computational Linguistics, 1990, 16(2): 79-85.
  • 4Philipp Koehn, Franz Josef Och, Daniel Marcu. Sta- tistical Phrase Based Translation [C]//Proceedings of the 2003 Conference of the North American Chapter ofthe Association for Computational Linguistics on Hu- man Language Technology. Edmonton, Canada, 2003: 48-54.
  • 5Dekai Wu. Stochastic Inversion Transduction Gram mars and Bilingual Parsing of Parallel Corpora [J]. Computational Linguistics, 1997, 23(3): 377-403.
  • 6David Chiang. A hierarchical Phrase-based Model for Statistical Machine Translation[C]//Proceedings of the 43rd Annual Meeting of the Association for Com-putational Linguistics. Ann Arbor, Michigan, 2005: 263- 270.
  • 7Yu Chen, Andreas Eisele. Hierarchical Hybrid Trans- lation between English and German[C]//Proceedings of the 14th Annual Conference of the European Association for Machine Translation. St. Raphael, France, 2010 : 90-97.
  • 8Declan Groves, Andy Way. Hybrid Example-Based SMT: the Best of Both Worlds? [C]//Proceedings of ACL 2005 Workshop on Building and Using ParallelTexts: Data-Driven Machine Translation and Beyond. Ann Arbor, Michigan, 2005:183- 190.
  • 9K. Yamada, K. Knight. A Decoder for Syntax Based Statistical MT[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia, PA, USA, 2002: 303- 310.
  • 10Michel Galley, Jonathan Graehl, Kevin Knight. Scal- able Inferences and Training of Context-Rich Syntax Translation Models[C]//Proceedings of the 21st In-ternational Conference on Computational Linguistics and 44th Annual Meeting of the ACL. Sydney, Aus- tralia, 2006: 961-968.

共引文献119

同被引文献23

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部