期刊文献+

含间隙振动系统低频周期冲击振动的模式类型及分岔特征 被引量:7

Pattern types and bifurcation characteristics of the low frequency periodic impact vibration of a periodically forced system with a clearance
下载PDF
导出
摘要 研究了带有间隙-刚性约束(弹性约束)振动系统的低频振动特性,分析了系统低频范围内基本周期冲击振动和亚谐冲击振动的模式类型、多样性、参数平面内的分布规律及分岔边界特征。通过多目标、多参数协同仿真分析发现了相邻基本周期冲击振动相互转迁的不可逆性及其伴随的两类转迁区域-迟滞域和舌形域,研究了迟滞域和舌形域的形成和分布特征及舌形域内亚谐冲击运动的模式类型及规律特征,分析了基本周期冲击振动向非完整和完整颤冲击振动的转迁过程。 Two periodically-forced systems with single rigid stop and single elastic stop respectively were considered. Pattern types,diversity,regularity and bifurcation characteristics of the fundamental group of impact motions and subharmonic impact motions in the parameter plan,in low frequency range,were analyzed. The transition irreversibility of adjacent impact motions with fundamental period and two types of transition regions,narrow hysteresis and tongues-shaped regions,were found by using the multi-target and multi-parameter co-simulation analysis. The occurrence mechanism and distribution characteristics of the two types of transition regions (hysteresis and tongue-shaped regions),as well as the pattern types and regularity of subharmonic impact motions in the tongue-shaped regions were studied. The transition law from impact motions with fundamental period to incomplete and complete chattering-impact vibrations was studied.
作者 侍玉青 杜三山 吕小红 罗冠炜 SHI Yuqing;DU Sanshan;L Xiaohong;LUO Guanwei(School of Mechatronic Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;Gansu Provincial Key Laboratory of System Dynamics and Reliability of Rail Transport Equipment,Lanzhou 730070,China)
出处 《振动与冲击》 EI CSCD 北大核心 2019年第6期218-225,共8页 Journal of Vibration and Shock
基金 国家自然科学基金(11672121 11862011) 兰州市创新创业人才项目(2014-RC-33) 甘肃省科技计划项目(18YF1WA059) 兰州交通大学青年科学研究基金(2015019)
关键词 间隙 冲击 低频振动 分岔 clearance impact low frequency vibration bifurcation
  • 相关文献

参考文献5

二级参考文献29

  • 1袁茹,赵凌燕,王三民.滚动轴承转子系统的非线性动力学特性分析[J].机械科学与技术,2004,23(10):1175-1177. 被引量:37
  • 2丁旺才,谢建华.碰撞振动系统分岔与混沌的研究进展[J].力学进展,2005,35(4):513-524. 被引量:40
  • 3白长青,许庆余,张小龙.考虑径向内间隙的滚动轴承平衡转子系统的非线性动力稳定性[J].应用数学和力学,2006,27(2):159-169. 被引量:34
  • 4张思进,周利彪,陆启韶.线性碰振系统周期解擦边分岔的一类映射分析方法[J].力学学报,2007,39(1):132-136. 被引量:12
  • 5Harsha S P, Sandeep K, Prakash R. The effect of speed of balanced rotor on nonlinear vibrations associated with ball bearings [ J ]. International Journal of Mechanical Sciences, 2003, 45 : 725 - 740.
  • 6Sopanen J, Mikkola A. Dynamic model of a deep-groove ball bearing including localized and distributed defects, Part 1: theory[ J ]. Proceedings of the institution of Mechanical Engineers, Part K: Journal Multi-body Dynamics, 2003, 217: 201 - 218.
  • 7Sopanen J, Mikkola A. Dynamic model of a deep-groove ball bearing including localized and distributed defects, Part 2: implementation and results[J]. Proceedings of the institution of Mechanical Engineers, Part K: Journal Multi-body Dynamics, 2003, 217:213-223.
  • 8Lioulios A N, Antoniadis I A. Effect of rotational speed fluctuations on the dynamic behaviour of rolling element bearings with radial clearances [J]. International Journal of Mechanical Sciences, 2006, 48:809 -829.
  • 9Maggio G M, Bernardo M di, Kennedy M P. Nonsmooth bifurcations in a piecewise-linear model of the Collpits oscillator [ J ]. IEEE Trans Circuit System, 2000, 47 (8) : 1160 - 1177.
  • 10Luo G W. Period-doubling bifurcations and routes to chaos of the vibratory systems contacting stops [ J ]. Physics Letters A, 2004, 323 : 210 - 217.

共引文献42

同被引文献44

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部