摘要
Silver nanoparticles (Ag NPs) can effectively address the issue of antibiotic-resistant bacterial infections to reduce the potential toxicity of Ag NPs. Although challenging, it is, therefore, necessary to achieve the sustainable release of Ag+ ions from a finite amount of Ag NPs. This study aims at designing an efficient and benign antimicrobial silver-based ternary composite composed of photocatalysis zinc oxide (ZnO) and reduced graphene oxide (rGO) as a carrier, in which the reactive oxygen species (ROS) excited from ZnO and Ag+ ions released from the Ag NPs cooperate to realize an effective antibacterial activity against E. coli and S. aureus. The constant effective bacterial performance of the ternary photocatalyst with minimum Ag content can be attributed to the increase in the available quantity of ROS, which results from the enhanced separation efficiency of the photogenerated carriers. The proposed system notably realized the long-term sustainable release of Ag+ ions with low concentration for 30 days when compared with an equivalent amount of silver nitrate. Moreover, the use of the composite prevents biotoxicity and silver wastage, and imparts enhanced stability to the long-lasting antibacterial efficacy.
由于具有独特的物理与化学性质,银纳米粒子被广泛应用于传感器、电化学、光催化等多个领域.在生物领域,银纳米粒子可以通过释放银离子有效地解决细菌感染问题,但是其本身的毒性不可忽略.为了减小银纳米粒子的潜在毒性,迫切需要寻找一种可持续释放银离子(Ag^+)的新型复合光催化抗菌剂.已有研究报道可将银纳米粒子负载在氧化铝、凝胶和二氧化硅上形成银基抗菌材料,但是大多数材料中银纳米颗粒尺寸较大,分布不均匀,且仅靠快速释放的银离子进行抗菌.本文通过一步溶剂热法制备了ZnO/Ag/rGO三元光催化抗菌剂,其中分别由银纳米粒子和氧化锌(ZnO)形成的银离子和活性氧(ROS)可对大肠杆菌和金黄色葡萄球菌产生协同抗菌作用.负载在还原氧化石墨烯(rGO)上的银纳米粒子持续释放出微量的银离子,后者通过库仑引力牢固地吸附在带负电荷的细菌细胞膜上,从而干扰细菌DNA合成,进而使细菌丧失分裂繁殖能力;与还原氧化石墨烯和银纳米粒子复合的氧化锌可以产生更多的O_2^(·–)和·OH等自由基,具有氧化能力的自由基可分解细菌细胞膜使细菌破裂死亡.银纳米粒子的表面等离子体共振效应不仅可以拓宽氧化锌半导体材料的光吸收范围,而且可以作为电子捕获阱捕获电子,加速光生电子与空穴的分离,有效抑制光生载流子的复合.与其他银基抗菌材料相比,该材料可以实现了30天低浓度银离子持续释放,并利用产生的活性氧和银离子稳定高效地进行抗菌.采用XRD,XPS,SEM,TEM,HRTEM,PL和ESR等表征方法分析了材料的结构、形貌、化学组成、元素价态及光学性质,并通过抑菌圈、最低抑菌浓度(MIC)和最低杀菌浓度(MBC)等性能测试比较了材料的抗菌性能.XRD和XPS结果证明银和氧化锌纳米粒子成功地负载在还原氧化石墨烯上.SEM,TEM和HRTEM分析发现还原氧化石墨烯上的银和氧化锌纳米粒子分布均匀,尺寸较小(5–10 nm).PL和ESR表征表明ZnO/Ag/rGO相比于ZnO/rGO和Ag/rGO有更好的载流子分离和自由基产生能力.因此,ZnO/Ag/rGO材料对大肠杆菌和金黄色葡萄球菌具有更低的最低抑菌浓度(MIC_(E.coli)=100×10^(-6)μg/mL,MIC_(S.aureus)=80×10^(-6)μg/mL)和最低杀菌浓度,该材料在抗菌领域具有潜在的应用前景.
基金
supported by the National Natural Science Foundation of China(51472101,51572114,21773062,21577036)
the Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials(JSKC17003)~~