摘要
考虑一类具有转移和治疗机制的肺结核传播模型在随机扰动下的动力学行为.首先,通过Lyapunov分析方法得到该模型正解的存在和唯一性;然后利用Has’minskii理论证明该模型存在唯一的平稳分布;最后通过随机分析方法得到该模型疾病消失的条件.
We considered a dynamic behavior of a class of tuberculosis transmission model with immigration and treatment mechanism under random perturbations.Firstly,the existence and uniqueness of a positive solution of the model were obtianed by Lyapunov analysis method.Secondly,it was proved that the model had unique stationary distribution by using Has’minskii theory.Finally,the conditions for extinction of the disease were obtained by stochastic analysis method.
作者
徐江
曹忠威
祖力
XU Jiang;CAO Zhongwei;ZU Li(School of Economics and Management,Changchun University of Technology,Changchun 130012,China;School of Applied Mathematics,Jilin University of Finance and Economics,Changchun 130117,China;College of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2019年第2期235-242,共8页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11701209)
吉林省科技发展计划项目(批准号:20160520110JH)
吉林省教育厅科学技术研究项目(批准号:JJKH20180462KJ
2015162)
关键词
随机结核病模型
平稳分布
转移和治疗
遍历性
灭绝性
stochastic tuberculosis model
stationary distribution
immigration and treatment
ergodicity
extinction