期刊文献+

模糊BP神经网络在军人伤亡保险理赔鉴定中的应用

The Application of Fuzzy BP Neural Network in Claim Appraisal of the Military Casualty Insurance
下载PDF
导出
摘要 伤亡性质鉴定意见是影响军人伤亡保险理赔的重要因素,伤亡性质鉴定错误将直接侵害伤亡军人、风险共担军人、以及承保军人伤亡附加险的保险公司利益。新作战环境下长期艰苦的备战使得军人因战、因公、因病的伤亡性质趋于复杂化和模糊化,而现行以军内各级卫生、政治部门出具的伤亡鉴定意见直接定性的方式极易产生口径不一、鉴定错误的情况。文章尝试结合模糊数学和人工神经网络的思想,构建具有自学习能力、容错能力、以及处理非线性关系的模糊BP神经网络模型,解决新作战环境下军人伤亡性质鉴定的模糊性、复杂性问题,从量化的角度提高伤亡性质鉴定的准确性。研究发现,通过伤亡时点等客观环境类和行为属性等主观行为类8项指标可以充分衡量军人伤亡事件的性质;采用模糊隶属度的转换,构建8×10×1的模糊BP神经网络结构,可以完成军人伤亡性质的精准鉴定;伤亡性质的模糊隶属度可以量化军人病伤、公伤或战伤的属性程度。 Casualty nature appraisal opinion is an important factor affecting the settlement of military casualty insurance claims.The mistake of casualty nature appraisal will directly infringe on the interests of military casualties,the risk-sharing military personnel,and the insurance companies that underwrite the additional insurance for military casualties.The long-term hard preparation under the new combat environment makes the nature of casualties of soldiers due to war,duty and illness tend to be complicated and blurred.However,the current method of directly determining casualties based on the medical and political departments at all levels in the army is easy to produce incidents of different standards and wrong identification.This paper attempts to combine fuzzy mathematics and artificial neural network to construct a fuzzy BP neural network model with good self-learning ability,fault-tolerant ability and nonlinear relationship to solve the fuzzy and complex problems in the identification of military casualties,and to improve the accuracy of the identification of casualties from the quantitative point of view.It is found that the nature of military casualties can be well measured by eight indices in objective environment and subjective behavior,such as the time point of casualties.The fuzzy membership degree can be used to construct the 8×10×1 structure of fuzzy BP neural network,which can accurately identify the nature of casualties.The fuzzy membership degree of casualties can quantify the degree of attributes of military casualties,public casualties or war casualties.
作者 刘辉 李仁传 Liu Hui;Li Renchuan
出处 《保险职业学院学报》 2019年第1期55-61,共7页 Journal of Insurance Professional College
关键词 军人伤亡保险 伤亡鉴定 模糊 BP神经网络 The military casualty insurance Casualty nature appraisal Fuzzy BP neural network
  • 相关文献

参考文献4

二级参考文献36

  • 1朱春江,唐德善,马文斌.基于灰色理论和BP神经网络预测观光农业旅游人数的研究[J].安徽农业科学,2006,34(4):612-614. 被引量:5
  • 2何淑菁,向小东.BP神经网络在我国人身保费收入中的应用研究[J].价值工程,2006,25(11):96-98. 被引量:3
  • 3张勇.中国个人账户的支付能力研究[J].数量经济技术经济研究,2007,24(7):126-134. 被引量:21
  • 4温家宝.政府工作报告[N].人民日报,2010-03-16.
  • 5Carson, J. M. and Hoyt R. E. Life Insurer Financial Distress:Classification Models and Empirical Evidence [ J ]. Journal of Risk and Insurance, 1995, (62) :764 - 775.
  • 6Cole, R. C. and McCullough A. K. , A Reexamination of the Corporate Demand for Reinsurance [ J ]. Journal of Risk and Insurance,2006, (73) : 169 - 192.
  • 7Diffusion, Optimal Proportional Reinsurance for Controlled Risk Process which is Perturbed [ J ]. Acta Mathematicae Applicatae Sinica,2007,23 (3) :477 - 488.
  • 8Garven,J. R. and Lamm-Tennant J. The Demand tor Reinsurance:Theory and Empirical Tests [ J]. Assurance,2003,71 (3) :217 -238.
  • 9Gron, A. Capacity constraints and cycles in property-casualty insurance markets [ J ]. The RAND Journal of Economics, 1994,25 ( 1 ) : 110 - 127.
  • 10Gron, A. Insurer demand for catastrophe reinsurance [ J ]. The Financing of Catastrophe Risk, 1999, ( 3 ) : 23 -50.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部