期刊文献+

基于Spark的并行化头脑风暴优化算法及复杂多峰函数优化 被引量:1

A Spark-based parallel brainstorm optimization algorithm and its application in optimizing complex multimodal functions
下载PDF
导出
摘要 头脑风暴优化BSO算法是一种新型的群体智能优化算法,启发于众人集思广益求解问题的模式,适合求解复杂多峰函数优化问题。但是,BSO求解多峰极值时需进行重复的迭代运算,面对大规模数据集时会出现计算效率与求解精度过低的现象。为解决上述问题,设计并实现了一种基于Spark的并行化头脑风暴优化算法,通过将BSO算法中计算复杂度最高的聚类与新解产生过程并行化,以提高算法的加速比与计算效率。特别地,基于并行化思想,将种群划分为多个子群进行协同演化,每个子群独立产生新解来保持种群多样性,提高算法的收敛速度。最后,利用并行化BSO算法求解多峰函数。实验表明,在并行节点的总核心数为10的情况下,并行化BSO算法计算时间节省一半,计算精度和串行BSO算法基本持平,收敛速度明显提高,实验结果说明了并行化BSO的有效性。 The brain storm optimization (BSO) algorithm is a new type of swarm intelligence optimization algorithm, which is inspired by the brainstorm problem-solving model and is suitable for solving complex multimodal function optimization problems. However, when solving multimodal extremum, the BSO requires iterative operations. When computing large data sets, its computation efficiency and accuracy are too low. In order to solve the above problems, we design and implement a parallel brainstorm optimization algorithm based on Spark. By parallelizing the clustering with the highest computational complexity in the BSO algorithm and the generation process of new populations, the speedup and efficiency of the algorithm are improved. In particular, based on the idea of parallelization, the population is divided into multiple subgroups for co evolution, and each subgroup produces new populations to maintain the diversity of the population and improve the convergence speed of the algorithm. Finally, the parallel BSO algorithm is used to solve the multimodal function. Experiments show that, when the total number of cores of the parallel nodes is 10, the computation time of the parallel BSO algorithm is saved by 50%, the computational accuracy is basically equal to the serial BSO algorithm, and the convergence speed is improved obviously. The results prove the validity of the parallelization of the BSO.
作者 杨广明 张涛 TRUONG Thanh-tung 王瑞 马连博 YANG Guang-ming;ZHANG Tao;TRUONG Thanh-tung;WANG Rui;MA Lian-bo(College of Software,Northeastern University,Shenyang 110169,China;College of Software,Northeastern University,Shenyang 110169,Liaoning,P.R.China)
出处 《计算机工程与科学》 CSCD 北大核心 2019年第3期393-399,共7页 Computer Engineering & Science
基金 国家自然科学基金(61773013)
关键词 头脑风暴优化算法 SPARK 多峰函数 群体智能 brainstorm optimization algorithm Spark multimodal function swarm intelligence
  • 相关文献

参考文献1

二级参考文献9

  • 1J MacQueen.Some Methods for Classification and Analysis of Multivariate Observations[A].Proc 5th Berkeley Symp Mathematics Statist and Probaility[C].1967.281-297.
  • 2H Ralambondrainy.A Conceptual Version of the k-Means Algorithm[J].Pattern Recognition Letters,1995,16(11):1147-1157.
  • 3Zhexue Huang.A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining[A].Proc SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery[C].1997.
  • 4Zhexue Huang.Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values[J].Data Mining and Knowledge Discovery,1998,2(3):283-304.
  • 5C J Merz,P Merphy.UCI Repository of Machine Learning Databases[EB/OL].http://www.ics.uci.edu/ mlearn/ MLRRepository.html,2004-09.
  • 6MIT Lincoln Labs.1999 DARPA Intrusion Detection Evaluation[EB/OL].http://www.ll.mit.edu/IST/ideval/index.html,1999-12.
  • 7G W Milligan,M C Cooper.An Examination of Procedures for Determining the Number of Clusters in a Data Set[J].Psychometrika,1987,50(2):159 -179.
  • 8M Meila,D Heckerman.An Experimental Comparison of Several Clustering and Initialization Methods[A].Proc of the 14th Conf on Uncertainty in Artificial Intelligence[C].1998.386-395.
  • 9C Fraley,A E Raftery.How Many Clusters? Which Clustering Method? Answers via Model-Based Cluster Analysis[J].Computer Journal,1998,41(8):578-588.

共引文献14

同被引文献14

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部