摘要
Deep space communication is quite different from conventional ground communication due to its time-varying,complexity and large signal delay,which consequently affects communication quality and system efficiency.Adjusting the transmission parameters when the channel environment changes during the communication can guarantee the performance index of the system,and therefore improve communication efficiency. An adaptive transmission scheme of transceiver based on Consultative Committee for Space Data Systems(CCSDS)protocols is proposed in this paper. According to the variation of the deep space channel,the symbol rate of transmission data is adjusted dynamically by estimating the signal-to-noise ratio(SNR) of the receiver in real time and adjusting the channel environment. This scheme can improve the channel utilization and system throughput under the premise of limiting the system bit error rate. Furthermore,this scheme is successfully implemented in Xilinx Virtex-5 FPGA board.
Deep space communication is quite different from conventional ground communication due to its time-varying,complexity and large signal delay,which consequently affects communication quality and system efficiency.Adjusting the transmission parameters when the channel environment changes during the communication can guarantee the performance index of the system,and therefore improve communication efficiency. An adaptive transmission scheme of transceiver based on Consultative Committee for Space Data Systems(CCSDS)protocols is proposed in this paper. According to the variation of the deep space channel,the symbol rate of transmission data is adjusted dynamically by estimating the signal-to-noise ratio(SNR) of the receiver in real time and adjusting the channel environment. This scheme can improve the channel utilization and system throughput under the premise of limiting the system bit error rate. Furthermore,this scheme is successfully implemented in Xilinx Virtex-5 FPGA board.