期刊文献+

基于频繁序列挖掘的后续行程序列推荐 被引量:1

Successive Travel Sequence Recommendation Based on Frequent Sequence Mining
下载PDF
导出
摘要 个性化旅游发展迅速,已有方法主要集中在单个旅游产品推荐上,而旅游行程存在明显的序列性,并受到当前已有行程轨迹影响。因此,提出一种旅行中后续行程序列的推荐方法 SeqRem,基于所有用户的行程序列挖掘频繁序列模式,并以此为依据利用最大点权独立集方法对用户的历史行程序列进行分割,以发现最优序列推荐内容。实验证明,SeqRem在单点推荐和序列推荐准确率与召回率均具有较好效果。 Personalized tourism has become the tendency.Current approaches mainly focus on single product recommendations.However,the travel routes have obvious sequential characteristics,and they are affected by existing routes.A successive travel sequence recommendation approach SeqRem is proposed,it mines the frequent sequence pattern of all the travelers,and use maximum weighted in.dependent set to cut a user’s historical routes while discover optimum successive sequence.Experiments demonstrate that SeqRem performs well in terms of precision and recall rates.
作者 温彦 马立健 陈明 WEN Yan;MA Li-jian;CHEN Ming(College of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,China;State Grid Shandong Electric Power Company,Qingdao Power Supply Company,Qingdao 266500,China)
出处 《软件导刊》 2019年第3期53-56,共4页 Software Guide
基金 教育部人文社会科学研究青年基金项目(17YJCZH187) 国家自然科学基金项目(61702306 61602278) 青岛市哲学社会科学规划项目(QDSKL1801131)
关键词 推荐系统 频繁序列挖掘 兴趣点 后续行程序列 数据挖掘 recommendation system frequent sequence mining point of interest successive travel sequence data mining
  • 相关文献

参考文献1

二级参考文献14

  • 1赵相福,欧阳丹彤.可用于诊断产生的计算碰集的新方法[J].吉林大学学报(理学版),2006,44(3):385-390. 被引量:6
  • 2Zhang Mu,Chen Yi. Study on the Recommendation Technology for Tourism Information Service [ C ]//2009 Second International Symposium on Computational Intelligence and Design. Washington DC : [ s. n. ] ,2009:410-415.
  • 3Jannach D,Zanker M, Fuchs M. Constraint-based recommendation in tourism:a multi-perspective case study[ J ]. Journal of Information Technology & Tourism, 2009, 11 (2): 139- 155.
  • 4Felfemig A, Gordea S, Jannach D, et al. A Short Survey of Recommendation Technologies in Travel and Tourism [ J ]. Oesterreichische Gesellschafffuer Artificial Intelligence ,2007, 25(7) :17-22.
  • 5Felfernig A, Burke R D. Constraint-based Recommender Systems:Technologies and Research Issues [ C ]//ACM International Conference on Electronic Commerce ( ICEC ), 2008. Innsbruck ,Austria: [ s. n. ] ,2008 : 1-10.
  • 6Felfernig A, Kiener A. Knowledge-based Interactive Selling of Financial .Services with FSAdvisor [ C ]//Proceedings of the 17th Innovative Applications of Artificial Intelligence Conference (AAAI). USA : AAAI Press, 2005 : 1475 - 1482.
  • 7Felfernig A, Friedrich G ,Jannach D, et al. An Integrated Environment for the Development of Knowledge- Based Recommender Applications [ J ]. International Journal of Electronic Commerce,2006,11 (2) : 11-34.
  • 8Zanker M, Jessenitschnig M, Schmid W. Preference reasoning with soft constraints in constraint-based recommender systems [ J]. Journal Constraints,2010,15 (4) :574-595.
  • 9Felfernig A,Teppan E. Knowledge-based Recommender Technologies for Marketing and Sales [ J ]. International Journal of Pattern Recognition and Artificial Intelligence, 2007,21 ( 2 ) : 333 -354.
  • 10Junker U. QUICKXPLAIN : Preferred Explanations and Relaxations for Over-Constrained Problems [ C ]//the 19th National Conference on AI (AAAI'04). [s.l. ]: [s. n. ] ,2004: 167- 172.

共引文献15

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部