期刊文献+

自媒体复杂网络消息传播模型 被引量:2

Message Propagation Model of Self-media Complex Network
下载PDF
导出
摘要 由经典传染病模型SIR衍生出的消息传播模型,对现实中的自媒体网络来说过于简单,无法适用。依据自媒体网络属于非均质的无标度网络、传染者自行退化特点建立了退化机制,并利用PageRank算法计算节点权威值,表达消息的传播概率,建立改进模型,提出新消息影响增强因子。考虑新消息发布的时机不同,在不同时间将传播概率叠加上增强因子,在原有传播人数达到最大值的时间前后发布,以增大传播者数量,延长传播时间。对不同消息的传播改变了固有的传播率。固有传播率越大,传播范围越广,传播时间越长,即越受社会关注的消息传播越快越广泛,延续时间也越长。 The message dissemination model derived from the SIR model is too simple for the self-media network and can not be applied in reality.Based on the scale-free network which belongs to the heterogeneous media network,we build degradation mechanism,and use PageRank algorithm to calculate the authoritative value of nodes,express the spread of the message probability,and establish an improved model.At the same time,a new message influence enhancement factor is proposed.Considering the different timing of new message delivery,the propagation probability is superposed with the enhancement factor at different times.It is found that the new message is released before and after the original transmission number reaches the maximum to increase number of communicators and extend the propagation time.We also consider the transmission mechanism of different messages.For different messages,we change the inherent transmission rate of messages,and come to the conclusion that the greater the inherent transmission rate,the wider the transmission range and the longer the propagation time,and the news of social concern spread faster,wider with longer duration.
作者 盛成成 刘亚平 朱勇 SHENG Cheng-cheng;LIU Ya-ping;ZHU Yong(School of Computer Engineering,Nanjing Institute of Technology,Nanjing 211167,China)
出处 《软件导刊》 2019年第3期157-161,共5页 Software Guide
基金 南京工程学院科技支撑项目(2017)
关键词 SIR模型 PAGERANK算法 自媒体 无标度网络 SIR model PageRank algorithm self-media scale-free network
  • 相关文献

参考文献8

二级参考文献99

共引文献300

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部