期刊文献+

分组马尔可夫叠加传输在非高斯脉冲信道上的性能研究 被引量:2

Performance of block Markov superposition transmission over non-Gaussian impulsive channels
下载PDF
导出
摘要 研究了非高斯脉冲信道上的分组马尔可夫叠加传输机制。基于精灵辅助等效系统,分析了分组马尔可夫叠加传输系统的性能下界。仿真结果表明,在特征因子不同的非高斯脉冲信道上,分组马尔可夫叠加编码技术均可获得较高的编码增益,且误比特率较低区域的误码性能均可与精灵辅助下界贴合。在BER=10-5时,分组马可夫叠加传输系统便可达到距离香农限约0.85 dB的性能。 Block Markov superposition transmission scheme was used over channels with symmetric alpha-stable(SαS)impulsive noise.Based on the equivalent genie-aided system,the lower bound of the block Markov superposition transmission system was analyzed.Numerical simulations over non-Gaussian impulsive channels with different characteristic exponents show that,in the low bit-error rate region,performance of the block Markov superposition transmission system matches well with the lower bound.Block Markov superposition transmission scheme performs well(with 0.85 dB away from Shannon limits at the BER of 10-5)over non-Gaussian impulsive channels.
作者 马啸 吉眉颖 陈声晓 MA Xiao;JI Meiying;CHEN Shengxiao(School of Data and Computer Science,Sun Yat-sen University,Guangzhou 510006,China;School of Electronics and Information Technology,Sun Yat-sen University,Guangzhou 510006,China;Guangdong Key Laboratory of Information Security Technology,Sun Yat-sen University,Guangzhou 510006,China)
出处 《通信学报》 EI CSCD 北大核心 2019年第3期109-115,共7页 Journal on Communications
基金 国家自然科学基金资助项目(No.91438101 No.61771499) 广东省自然科学基金重大基础研究培育基金资助项目(No.2016A030308008) 中山大学高校基本科研业务费2017年度重大项目和前沿新兴交叉学科培育资助计划基金资助项目(No.17lgjc22 No.17lgjc45)~~
关键词 分组马尔可夫叠加传输 非高斯脉冲信道 SαS信道模型 精灵辅助下界 block Markov superposition transmission(BMST) non-Gaussian impulsive channel symmetric alpha-stable(SαS)model genie-aided lower bound
  • 相关文献

参考文献2

二级参考文献12

  • 1宋效正,刘璐,汤俊雄.无线光通信卷积交织与编码的实验及仿真研究[J].通信学报,2007,28(4):13-17. 被引量:9
  • 2Berrou C, Glavieux A, and Thitmajshima P. Near Shannon limit error-correcting coding and decoding-codes [C]. IEEE Int. Conf. on Communications, Geneva, Switzerland, May, 1993: 1064-1070.
  • 3Tuchler M, Koetter R, and Singer A C. Turbo equalization: Principles and new results [J]. IEEE Trans. on Commun., 2002, 50(5): 754-767.
  • 4Koetter R, Singer A C, and T~lchler M. Turbo equalization [J]. IEEE Signal Process. Mag., 2004, 21(3): 67-80.
  • 5Chuah T C. Turbo equalisation in non-Gaussian impulsive noise [J]. IEE Proc.- Vis. Image Signal Process., 2005, 152(1): 52-60.
  • 6Middleton D. Non-Gaussian noise models in signal processing for telecommunications: New methods and results for class A and class B noise models [J]. IEEE Trans. on Inf. Theory, 1999, 45(4): 1129-1149.
  • 7Divsalar S D D D and Pollara F. Iterative turbo decoder analysis based on density evolution [J]. IEEE Journal on Selected Area in Communications, 2001, 19(5): 891-907.
  • 8Bhattad K and Narayanan K R. An MSE-based transfer chart for analyzing iterative decoding schemes using a Gaussian approximation [J]. IEEE Trans. on Inf. Theory, 2007, 53(1): 22-38.
  • 9Brink S T. Convergence behavior of iteratively decoded parallel concatenated codes [J]. IEEE Trans. on Commun., 2001, 49(10): 1727-1737.
  • 10Nolan J P. Numerical calculation of stable densities and distribution [J]. Comm. Statist, Stochastic Models, 1997, 13(4): 759-774.

共引文献6

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部