摘要
针对目前智能手机识别人体运动状态种类少、准确率低的问题,提出一种利用加速度传感器和重力传感器分层识别人体运动状态的方案。首先,利用加速度和重力加速度的关系计算出与手机方向无关的惯性坐标系下的线性加速度;其次,根据人体运动频率的变化范围和线性加速度矢量来确定脚步的波峰和波谷位置;最后,提取线性加速度在时域上的特征向量,使用层次支持向量机方法分层识别人体运动状态。实验结果表明,该方法能有效识别人体6种日常运动状态,准确率达到93.37%。
To solve problems of low accuracy and fewer types of human motion state recognized by current smart phones,a method to do hierarchical recognition by using acceleration sensors and gravity sensors was proposed.Firstly,linear acceleration in inertial coordinate system and independent of phone direction was calculated by using the relation between acceleration and gravity acceleration.Secondly,according to the span of human motion frequency and linear acceleration vector,positions of peak and trough of footsteps were determined.Finally,feature vector of linear acceleration in time domain was extracted and human motion states were recognized hierarchically by using hierarchical support vector machine(H-SVM).The experiment shows the method can recognize six usual human motion states,while accuracy rate up to 93.37%.
作者
殷晓玲
陈晓江
夏启寿
何娟
张鹏艳
陈峰
YIN Xiaoling;CHEN Xiaojiang;XIA Qishou;HE Juan;ZHANG Pengyan;CHEN Feng(School of Information Science and Technology,Northwest University,Xi’an 710127,China;College of Mathematics and Computer Science,Chizhou University,Chizhou 247000,China)
出处
《通信学报》
EI
CSCD
北大核心
2019年第3期157-169,共13页
Journal on Communications
基金
国家自然科学基金资助项目(No.61170218
No.61272461
No.61373177)~~
关键词
运动状态识别
层次支持向量机
智能手机传感器
时域特征
motion state recognition
hierarchical support vector machine
smart phone sensor
time domain feature