摘要
人教A版数学必修4用三角函数线证明两角差的余弦公式 cos (α-β)= cosα cosβ+ sinα sinβ,叙述如下:我们先对简单的情况进行讨论.如图1,设角α、β为锐角,且β<α,角α的终边与单位圆的交点为P 1,∠POP 1=β,则∠xOP=α-β.过点P作垂直于x轴,垂足为M,那么OM就是角α-β的余弦线.这里就是要用角α、β的正弦线、余弦线来表示OM.过点P作PA垂直于OP1,垂足为A,过点A作AB垂直于x轴,垂足为B,过点P作PC垂直于AB,垂足为C,那么OA表示 cosβ,AP表示 sinβ,并且∠PAC=∠P1-1Ox=α.于是OM=OB+BM=OB+CP=OA cos α+AP sin α= cosβ cosα+ sinβ sinα.值得注意的是,以上结果是在α、β、α-β都是锐角,且β<α的情况下得到的.要说明此结果是否在角α、β为任意角时也成立,还要做不少推广工作,并且这个推广工作比较繁难,同学们可以自己动手试一试.