摘要
为了提高档案馆信息管理系统进行统计及分析的效率,提出一种基于数据挖掘技术的档案馆信息快速分析算法。对档案馆信息数据挖掘的工作流程进行阐述。分析典型K-means性,并采用熵加权对典型K-means及运行效率较高,从而在更深层次上发挥档案信息的作用。
An archive information fast analysis algorithm based on data mining technology is proposed to improve the statistics and analysis efficiency of archives information management system.The workflow of the archive information data mining is described.The necessity of using typical K-means clustering algorithm to reduce the dataset dimension and eliminate the similar data redundancy is analyzed,and the entropy weighting is used to improve the typical K-means clustering algorithm.The experimental results show that,in comparison with the original K-means clustering algorithm,the proposed algorithm has higher clustering accuracy and running efficiency,and can make the file information play an important role in a higher level.
作者
甘璐
GAN Lu(Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China)
出处
《现代电子技术》
北大核心
2019年第7期32-34,共3页
Modern Electronics Technique
关键词
数据挖掘
档案管理
信息分析
信息自动化
K-MEANS聚类
熵加权
data mining
archive management
information analysis
information automation
K-means clustering
entropy weighting