期刊文献+

基于全覆盖粒计算的K-medoids文本聚类算法 被引量:3

K-medoids text clustering algorithm based on full covering GrC
下载PDF
导出
摘要 传统K-medoids聚类算法随机选取初始聚类中心,存在迭代次数增加、聚类结果波动较大的问题,因此提出基于全覆盖粒计算的K-medoids文本聚类算法。该算法定义了全覆盖平均粒度重要性的概念。首先对文本进行Single-Pass粗聚类,利用全覆盖粒度重要性和平均粒度重要性从粗聚类结果中产生初始聚类中心候选集,再基于密度和最大最小距离法则从候选集中选出初始聚类中心。通过实验验证,该算法的聚类迭代次数明显减小,聚类质量明显提高。 The traditional K-medoids clustering algorithm selects the initial clustering center randomly,and has the problems of iteration number increase and large clustering results fluctuation,so the K-medoids text clustering algorithm based on full covering granular computing(GrC)is proposed.The concept of the full coverage average granularity importance is defined in the algorithm.The Single.Pass rough clustering is performed for the text,then the candidate sets of initial clustering center are generated from the rough clustering results by means of full covering granularity importance and average granularity importance,and the initial clustering center is selected from the candidate sets on the basis of density and max.min distance rule.The experimental results show that the clustering iteration number of the algorithm is reduced,and the clustering quality is improved obviously.
作者 邹雪君 谢珺 任密蜂 续欣莹 ZOU Xuejun;XIE Jun;REN Mifeng;XU Xinying(Taiyuan University of Technology,Jinzhong 030600,China)
机构地区 太原理工大学
出处 《现代电子技术》 北大核心 2019年第7期162-166,共5页 Modern Electronics Technique
基金 山西省回国留学人员科研项目(2015-045 2013-033)~~
关键词 文本聚类 K-medoids 全覆盖粒计算 Single-Pass 聚类中心 最大最小距离 密度 text clustering K-medoids full covering GrC Single-Pass clustering center max-min distance density
  • 相关文献

参考文献6

二级参考文献53

共引文献136

同被引文献37

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部