期刊文献+

关联规则Apriori算法的研究和改进 被引量:7

Research and Improvement of Association Rule Apriori Algorithm
下载PDF
导出
摘要 随着大数据时代的到来,数据挖掘技术成为了信息界的主要关注方向,但从大量数据中提取有价值的内容成为了难题。随着数据量的逐渐增加,以往的数据挖掘方法已不再适应当前大数据环境下的大数据挖掘。基于此,不断研究和改进Apriori算法的主要目的是使其能适应当前环境下的数据挖掘、存储和计算,使繁琐的数据挖掘过程变得简单明了,提高挖掘效率。 With the arrival of the era of big data,data mining technology has become the main focus of the information community,but extracting valuable content from large amounts of data has become a difficult problem.With the gradual increase of data volume,the previous data mining methods are no longer suitable for large data mining in the current large data environment.Based on this,the main purpose of continuous research and improvement of Apriori algorithm is to make it adapt to the current environment of data mining,storage and calculation,so that the cumbersome data mining process becomes simple and clear,and improve the mining efficiency.
作者 王晓辉 周雪芳 刘国新 Wang Xiaohui;Zhou Xuefang;Liu Guoxin(Qingdao Huanghai University,Qingdao Shandong 266427,China)
机构地区 青岛黄海学院
出处 《信息与电脑》 2019年第5期71-72,共2页 Information & Computer
关键词 关联规则 APRIORI算法 MAT-PPS算法 association rules Apriori algorithm MAT-PPS algorithm
  • 相关文献

参考文献3

二级参考文献17

  • 1李晓虹,尚晋.一种改进的新Apriori算法[J].计算机科学,2007,34(4):196-198. 被引量:26
  • 2倪坚.对Apriori算法的一个改进[J].大连交通大学学报,2007,28(2):88-89. 被引量:9
  • 3柴华昕,王勇.Apriori挖掘频繁项目集算法的改进[J].计算机工程与应用,2007,43(24):158-161. 被引量:30
  • 4Lee Y C, Hong T P, Lin W Y. Mining Association Rules with Multiple Minimum Supports Using Maximum Constraints[J],International Journal of Approximate Reasoning, 2005, 40(7): 44.
  • 5Carter C L, Hamilton H J. Efficient Attribute-oriented Algorithms for Knowledge Discovery from Large Database[J]. IEEE Trans.Knowledge and DataEng., 1998, 10(2):193-208.
  • 6Fukuda T. Data Mining with Optimized 2-Dimensional Association Rules[J]. ACM Trans. on Database Systems, 2001, 26(2).
  • 7Liu Bing, Wynne H, Ma Yiming. Mining Association Rules with Multiple Minimum Supports[C]. International Conference on Knowledge Discovery and Data Mining, 1999:337 - 341.
  • 8K Wang, J Han. Mining Frequent Itemsets Using Support Constraints[C]. Proceedings of the 26^th International Conference on Very Large Data Bases, 2000: 43-52.
  • 9William Ford,Wilam Topp. Data structure with C ++ [ M ]. Prentice - hall International, Inc., 1996.7.481 -485.
  • 10R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in largedatabases. SIGMOD'93, 207 - 216, Washington,D.C.

共引文献20

同被引文献65

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部