期刊文献+

Differential Diagnostic Value of Texture Feature Analysis of Magnetic Resonance T2 Weighted Imaging between Glioblastoma and Primary Central Neural System Lymphoma 被引量:5

磁共振T2加权成像纹理特征分析在脑胶质母细胞瘤与脑原发性中枢神经系统淋巴瘤鉴别诊断中的价值(英文)
下载PDF
导出
摘要 Objective To investigate the difference in tumor conventional imaging findings and texture features on T2 weighted images between glioblastoma and primary central neural system(CNS) lymphoma. Methods The pre-operative MRI data of 81 patients with glioblastoma and 28 patients with primary CNS lymphoma admitted to the Chinese PLA General Hospital and Hainan Hospital of Chinese PLA General Hospital were retrospectively collected. All patients underwent plain MR imaging and enhanced T1 weighted imaging to visualize imaging features of lesions. Texture analysis of T2 weighted imaging(T2 WI) was performed by use of GLCM texture plugin of ImageJ software, and the texture parameters including Angular Second Moment(ASM), Contrast, Correlation, Inverse Difference Moment(IDM), and Entropy were measured. Independent sample t-test and Mann-Whitney U test were performed for the between-group comparisons, regression model was established by Binary Logistic regression analysis, and receiver operating characteristic(ROC) curve was plotted to compare the diagnostic efficacy. Results The conventional imaging features including cystic and necrosis changes(P = 0.000), ‘Rosette' changes(P = 0.000) and ‘incision sign'(P = 0.000), except ‘flame-like edema'(P = 0.635), presented significantly statistical difference between glioblastoma and primary CNS lymphoma. The texture features, ASM, Contrast, Correlation, IDM and Entropy, showed significant differences between glioblastoma and primary CNS lympoma(P = 0.006,0.000, 0.002, 0.000, and 0.015 respectively). The area under the ROC curve was 0.671, 0.752, 0.695, 0.720 and 0.646 respectively, and the area under the ROC curve was 0.917 for the combined texture variables(Contrast, cystic and necrosis, ‘Rosette' changes, and ‘incision sign') in the model of Logistic regression. Binary Logistic regression analysis demonstrated that cystic and necrosis changes, ‘Rosette' changes and ‘incision sign' and texture Contrast could be considered as the specific texture variables for the differential diagnosis of glioblastoma and primary CNS lymphoma. Conclusion The texture features of T2 WI and conventional imaging findings may be used to distinguish glioblastoma from primary CNS lymphoma.
出处 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第1期10-17,共8页 中国医学科学杂志(英文版)
关键词 GLIOBLASTOMA primary CENTRAL NEURAL system LYMPHOMA texture analysis T2 WEIGHTED imaging differential diagnosis glioblastoma primary central neural system lymphoma texture analysis T2 weighted imaging differential diagnosis
  • 相关文献

参考文献8

二级参考文献72

共引文献184

同被引文献44

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部