期刊文献+

关于物联网技术在远程图像监控系统优化中的应用研究

Research on the Application of Internet of Things Technology in the Optimization of Remote Image Monitoring System
下载PDF
导出
摘要 当今社会中,视频监控可谓是无处不在,它便利了人们的生活,更为警方案件的侦破提供了很大的帮助。而视频监控系统离不开互联网的支持,它需要通过互联网来采集视频数据并加以分析,才能实现对对象的远程视频监控。而视频监控系统的性能受到各个方面因素的影响,例如监控图像数据的采集和传输的实时程度。网络延时等也是常见的问题,本文将基于网络技术和经常使用的图像压缩技术,来讨论网络延时和吞吐量对视频监控系统产生的影响,分析远程视频监控如何在即保证其实时性又能够使视频不失真。在物联网技术的支持下,图像可以通过两种编码方式对所传输的数据进行处理。数据的传输一般受到带宽和数据压缩比两方面的影响,而这种方式可以在带宽不改变的情况下,改善数据压缩比,从而使传输效率得到提高。系统仿真实验证明了该方法有效且可靠,视频可以在无损基础上进行实时传输,该方法在视频监控系统的优化中具有一定的推广意义。 In today’s society, video surveillance can be described as ubiquitous. It facilitates people’s lives and provides great help for the detection of police cases. The video surveillance system is inseparable from the Internet’s blessing. It needs to collect video data through the Internet and analyze it to achieve remote video surveillance of the object. The performance of the video surveillance system is affected by various factors, such as the real-time degree of monitoring image data acquisition and transmission. Network latency and so on are also common problems in our life, and this article will discuss the impact of network latency and throughput on the video surveillance system based on network technology and the image compression technology we use frequently. Monitoring how to ensure its real-time performance while making the video undistorted. If you want to optimize remote video surveillance, there is a relatively effective way- Internet of Things technology. With the support of the Internet of Things technology, images can be processed by two encoding methods. The transmission of data is generally affected by both bandwidth and data compression ratio, and this method can improve the data compression ratio without changing the bandwidth, thereby improving the transmission efficiency. The system simulation experiment proves that the method is effective and reliable, and the video can be transmitted in real time on a lossless basis. This method has certain promotion significance in the optimization of video surveillance system.
作者 韩一舜 陈宁华 朱鸣晨 Han Yi-shun;Chen Ning-hua;Zhu Ming-chen
出处 《电力系统装备》 2019年第3期251-252,共2页 Electric Power System Equipment
关键词 物联网 实时监控 视频采集 量化编码算法 Internet of Things real-time monitoring video acquisition quantization coding algorithm
  • 相关文献

参考文献4

二级参考文献20

  • 1秦运龙 孙广玲 张新鹏.利用运动矢量进行视频篡改检测.计算机研究与发展,2009,46:227-233.
  • 2Lin Y R, Huang H Y, Hsu W H. An embedded watermark tech- nique in video for copyright protection [ C ]//Proceedings of the 18th Int. Conf. on Pattern Recognition. Piscataway, NJ: Institu- te of Electrical and Electronics Engineers Inc. 2006: 795-798. [DOI: 10. 1109/ICPR. 2006. 244].
  • 3Ahun O, Sharma G, Celik M, et al. A set theoretic framework for watermarking and its application to semifragile tamper detec- tion [ J ]. IEEE Transactions on Information, Forensics and Secu- rity, 2006, 1 ( 4 ) : 479492. [DOI: 10. 1109/TIFS. 2006. 885018 ].
  • 4De Roover C, De Vleeschouwer C, Lefebvre F, et al. Robust video hashing based on radial projections of key frames [ J ]. IEEE Transactions on Signal Processing, 2005, 53 (10) : 4020- 4037. [ DOI: 10. ll09/TSP. 2005. 855414].
  • 5Wang W H, Farid H. Exposing digital forgeries in color filter ar- ray interpolated images [ C ]//Proc. of MM&Sec' 07. New York : Association for Computing Machinery, 2007:715-728.
  • 6Wang W H, Farid H. Exposing digital forgeries in video by de- tecting double MPEG compression [ C ]//Proceedings of the Mul- timedia and Security Workshop Geneva. Switzerland: ACM, 2006 : 37-47.
  • 7Wang W H, Farid H. Exposing digital forgeries in video by de- tecting double quantization [ C ]//Proceedings of the 11 th ACM Multimedia and Security Workshop. Princeton : ACM, 2009 : 39- 48.
  • 8Zhang J, Su Y T. Detecting logo-removal forgery by inconsisten- cies of blur [ C ]//Proceedings of 2009 International Conference on Industrial Mechatronics and Automation. Singapore: IEEE Industrial Electronics Society, 2009: 32-36. [ DOI: 10. 1109/ ICIMA. 2009.5156553 ].
  • 9Kobayashi M, Okabe T, Sato Y. Detecting forgery from static- scene video based on inconsistency in noise level functions [ J]. IEEE Transactions on Information Forensics and Security, 2010, 5(4) :883-892. [ DOI: 10. 1109/TIFS. 2010. 2074194].
  • 10Lee J W, Lee M J, Oh T W, et al. Screenshot identification using combing artifact from interlaced video[ C ]//Proceedings of the 12th ACM Workshop on Multimedia and Security. Princeton: ACM Multimedia and Security Workshop, 2010:653-660.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部