期刊文献+

基于物联网技术的虚拟电厂电力设备监测控制架构研究 被引量:1

Research on Monitoring and Control Architecture of Power Equipment in Virtual Power Plant Based on Internet of Things Technology
下载PDF
导出
摘要 随着可再生能源的不断发展,电力系统需要更高的灵活性。虚拟电厂技术的提出,可以用来协调多种能源形式的电力生产,实现集中式化石能源和分布式可再生能源的混合应用,提高用户多种需求的能源梯级利用效果。该研究在分析总结现有虚拟电厂发展的基础上,研究利用物联网和云计算等技术对虚拟电厂电力生产进行监测和控制,提出一种基于TSN和NFV物联网技术的电厂控制监测架构,以实现不同能源机组的边缘控制和负荷集中调配。 With the continuous development of renewable energy, power system needs more flexibility. The virtual power plant technology can be used to coordinate the power production of various forms of energy, realize the hybrid application of centralized fossil energy and Distributed Renewable energy, and improve the energy cascade utilization effect of users’multiple needs. Based on the analysis and summary of the development of existing virtual power plants, this paper studies the use of Internet of Things and cloud computing technology to monitor and control the power production of virtual power plants. A power plant control monitoring framework based on TSN and NFV Internet of Things technology is proposed to achieve the edge control of different energy units and centralized load allocation.
作者 马咸 Ma Xian
出处 《电力系统装备》 2019年第2期29-30,共2页 Electric Power System Equipment
关键词 虚拟电厂 物联网 监测诊断 远程控制 virtual power plant Internet of things monitoring and diagnosis remote control
  • 相关文献

参考文献3

二级参考文献52

  • 1Crabtree C J, Feng Y, Tavner P J. Detecting incipient wind turbine gearbox failure., a signal analysis method for on-line condition monitoring[C]//Proceeding of European Wind Energy Conference, Poland, 2010.
  • 2Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39.
  • 3Amirat Y, Benbouzid M, A1-Ahmar E. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636.
  • 4Lu Bin, Li Yaoyu, Wu Xin. A review of recent advance in wind turbine condition monitoring and fault diagnosis [C]//Proceedings of Power Electronics and Machines in Wind Application, Lincoln, 2009: 1-7.
  • 5Zaher A, McArther S D J, Infield D G, et al. Online wind turbine fault detection through automated scada data analysis[J]. Wind Energy , 2009, 12(6): 574-593.
  • 6Yang Wenxian, Tavner P J, Crabtree C J, et al. Costeffective condition monitoring for wind turbines[J]. IEEE TranslndustrialElectronics, 2010, 57(1): 263-271.
  • 7Simon J W, Xiang B J, Yang Wenxian. Condition monitoring of the power output of wind turbine generators using wavelets[J]. IEEE Trans. on Energy Conversion, 2010, 25(3): 715-721.
  • 8Yang W, Tavner P J, Wilkinson M R. Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train[J]. Renewable Power Generation, 2009, 3(1): 1-11.
  • 9Wilkinson M R, Tavner P J. Condition monitoring of generators & other subassemblies in wind turbine drive trains[J]. Proceedings of IEEE International Symposium on Diagnostics for Electric Machines, Power Electrics and Drives, Cracow, 2007.
  • 10Gross K C, Singer R M, Wegerich S W, et al. Application of a model-based fault detection system to nuclear plant signals[C]//Proceedings of 9th International Conferenceon Intelligent Systems Application to Power System, Seoul, Korea, 1997.

共引文献163

同被引文献9

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部