期刊文献+

按风格划分数据的模糊聚类算法 被引量:5

A Fuzzy Style Clustering Algorithm on Stylistic Data
下载PDF
导出
摘要 以K-means和模糊C均值为代表的划分式聚类算法无法有效处理按照风格为标准划分样本的聚类任务.针对此问题,文中提出按风格划分数据的模糊聚类算法.利用风格标准化矩阵表示包含在类簇中样本的风格信息,同时使用逼近标准风格之后的样本计算距离矩阵,并以隶属度表示样本点对于类簇的可代表程度.通过常用的交替优化策略同时优化隶属度矩阵和风格标准化矩阵.文中算法可以有效利用样本的风格信息和样本点与类簇之间的关系信息,在人工数据集和真实数据集上的实验表明算法的有效性. In the stylistic data, different organizational styles obviously or implicitly exist in different clusters. The classical partitional clustering methods represented by K -means and fuzzy C-means are ineffective for the stylistic data. Therefore, a fuzzy style clustering (FSC) is proposed. A style normalization matrix is utilized to represent the style information of the samples within each cluster, and the distance matrix is calculated with samples transformed by style normalization matrices. Besides, the fuzzy membership is exploited to describe the representable degree of a sample for a certain cluster. The membership matrix and style normalization matrix are optimized simultaneously by the commonly-used alternating optimization technique. FSC can make use of the style information of samples and the information between samples and clusters effectively, and the experimental results on synthetic and real datasets indicate the effectiveness of the proposed algorithm.
作者 沈浩 王士同 SHEN Hao;WANG Shitong(School of Digital Media, Jiangnan University, Wuxi 214122;Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi 214122)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2019年第3期204-213,共10页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61572236)资助~~
关键词 糊聚类 风格化数据 风格信息 模糊风格划分 Fuzzy Clustering Algorithm Stylistic Data Style Information Fuzzy Style Clustering
  • 相关文献

参考文献6

二级参考文献146

共引文献442

同被引文献26

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部