摘要
为了构建完整的微生物生长环境关系数据库,提出基于卷积神经网络-长短时记忆(CNN-LSTM)的关系抽取系统.结合卷积神经网络(CNN)和长短时记忆(LSTM),实现对隐含特征的深度学习,提取分布式词向量特征和实体位置特征作为模型的特征输入.对比实验验证加入特征后CNN-LSTM模型的优势,并将CNN模型的特征输出作为LSTM模型的特征输入.在Bio-NLP 2016共享任务发布的BB-event语料集上得到目前最好的结果.
To build a complete bacteria biotope relation database,a relation extraction system based on a convolutional neural network(CNN)-long short-term memory(LSTM)model is proposed.Combining CNN and LSTM,the deep learning of hidden features are realized,and the distributed word vector feature and entity position feature are extracted as feature input of the model.Comparative experiments verify the advantages of CNN-LSTM model after the addition of features.The feature output of the CNN model is taken as the feature input of the LSTM model,and the best result is obtained on the BB-event corpus published by the Bio-NLP 2016 shared task.
作者
李孟颖
王健
王琰
林鸿飞
杨志豪
LI Mengying;WANG Jian;WANG Yan;LIN Hongfei;YANG Zhihao(School of Computer Science and Technology,Dalian Universi ty of Technology,Dalian 116024)
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2019年第2期177-183,共7页
Pattern Recognition and Artificial Intelligence
基金
国家重点研发计划项目(No.2016YFB1001103)
国家自然科学基金项目(No.61572098)资助~~
关键词
卷积神经网络
长短时记忆神经网络
关系抽取
Convolutional Neural Network(CNN)
Long Short-Term Memory(LSTM)
Relation Extraction