摘要
本文研究了一类广义Fisher方程的动态分歧和解的稳定性.利用中心流形约化方法和吸引子分歧理论,本文得到了动态分歧的完整判据、类型以及性质,给出了吸引域的某些刻画,从而补充完善了已有结果.数值模拟验证了理论分析的正确性.
This research studies the dynamic bifurcation and stability of solutions for a generalized Fisher equation. The complete criterion, type and property of dynamical bifurcation are obtained by center manifold reduction method and attractor bifurcation theory. Some characterizations of the basins of the attractors are given. These results improve the known results. Numerical simulations are provided to verify the theoretical analysis.
作者
张强
曾艳
周艳红
ZHANG Qiang;ZENG Yan;ZHOU Yan-hong(College of Computer Science, Civil Aviation Flight University of China, Guanghan 618307, China)
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第2期222-226,共5页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(31300853)
中国民用航空飞行学院青年基金(Q2014-54)
关键词
FISHER方程
动态分歧
中心流形约化
吸引子分歧
Fisher equation
Dynamical bifurcation
Center manifold reduction
Attractor bifurcation