期刊文献+

基于语义分析的恶意JavaScript代码检测方法 被引量:7

Syntax-based malicious JavaScript code detection method
下载PDF
导出
摘要 JavaScript是一种动态脚本语言,被用于提高网页的交互能力.然而攻击者利用它的动态性在网页中执行恶意代码,构成了巨大威胁.传统的基于静态特征的检测方式难以检测经过混淆后的恶意代码,而基于动态分析检测的方式存在效率低等问题.本文提出了一种基于语义分析的静态检测模型,通过提取抽象语法树的词法单元序列特征,使用word2vec训练词向量模型,将生成的序列向量特征输入到LSTM网络中检测恶意JavaScript脚本.实验结果表明,该模型能够高效检测混淆的恶意JavaScript代码,模型的精确率达99.94%,召回率为98.33%. JavaScript is a dynamic scripting language originally designed to improve the interactive capability of web pages. However, attackers use this peculiarity to execute malicious code on web pages, posing a huge threat. The obfuscated malicious code is difficult to detect using the traditional method based on static features, and the method based on dynamic analysis is inefficient. This paper proposes a static detection model based on semantic analysis. Specifically, the lexical unit sequence is extracted from abstract syntax trees;then the word vectors are generated by word2vec based on the lexical unit sequence;finally the generated vectors are input into the LSTM network to detect malicious JavaScript. Experiments show that the model can effectively detect obfuscated malicious JavaScript code and improve the detection speed, with a precision of 99.94% and recall of 98.33%.
作者 邱瑶瑶 方勇 黄诚 刘亮 张星 QIU Yao-Yao;FANG Yong;HUANG Cheng;LIU Liang;ZHANG Xing(College of Electronics and Information Engineering, SichuanUniversity, Chengdu 610065, China;College of Cybersecurity, Sichuan University, Chengdu 610065, China;Nsfocus Information Technology Company, Limited, Beijing 100089, China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第2期273-278,共6页 Journal of Sichuan University(Natural Science Edition)
基金 CCF-绿盟科技"鲲鹏"基金(2018008)
关键词 恶意JavaScript代码检测 抽象语法树 长短时记忆网络 深度学习 Malicious JavaScript code detection Abstract syntax tree Long short-term memory Deep learning
  • 相关文献

参考文献4

二级参考文献19

  • 1董志强,肖新光,张栗伟.编码心理学分析病毒同源性[J].信息安全与通信保密,2005(8):55-59. 被引量:9
  • 2Wang Z, Pierce K, McFarling S. Bmat-a binary matching tool for stale profile propagation[J]. The Journal of Instruction-Level Parallelism (ILP), 2000, 2 : 1.
  • 3Flake. H. Structural comparison of executable objects [C]//Proceedings of the IEEE Conference on Detec- tion of Intrusions, Malware and Vulnerability Assess- ment(DIMVA). Dortmund, Germany: IEEE, 2004.
  • 4Dullien T, Rolles R. Graph-based comparison of ex- ecutable objects ( English version) [J]. SSTIC, 2005, 5 : 1.
  • 5Gao D, Reiter M K, Song D. Binhunt: Automati- cally finding semantic differences in binary pro- grams[C]//Information and Communications Secu- rity. Berlin Heidelberg: Springer, 2008.
  • 6Bailey M, Oberheide J, Andersen J, etal. Automa- ted classification and analysis of internet matware [C]//Recent advances in intrusion detection. Berlin Heidelberg: Springer, 2007.
  • 7Lee T, Mody J J. Behavioral classification[C]//EIC- AR Conference. Hamburg, Germany.. [s. n.], 2006.
  • 8Levenshtein V I. Binary codes capable of correcting deletions, insertions and reversals [ J ]. Soviet Physics Doklady, 1966, 10(10).. 707.
  • 9Li J, Xu J, Xu M, et al. Malware obfuscation measuring via evolutionary similarity[C]//Future Information Networks (ICF1N). Beijing, China; IEEE, 2009.
  • 10杨轶,苏璞睿,应凌云,冯登国.基于行为依赖特征的恶意代码相似性比较方法[J].软件学报,2011,22(10):2438-2453. 被引量:21

共引文献54

同被引文献40

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部