期刊文献+

一种基于ViBe与卡尔曼滤波的运动检测算法设计

A Motion Detection Algorithm Based on ViBe and Kalman Filter
下载PDF
导出
摘要 为了实现对运动物体的追踪,结合ViBe(背景提取算法)对视频首帧进行样本集建立,通过像素级别的逐帧判断,将前景与背景进行了分离,进行形态学处理之后利用卡尔曼滤波对分离后的结果进行运动物体追踪和标记。基于Matlab通过视频处理实验验证了可行性,可以在机器视觉、视频监测处理领域有所应用。 In order to realize the tracking of moving objects, the first frame of video is used to form the Sample Set with the ViBe (visual background extractor) which uses the frame by frame judgment at the pixel level to separate the foreground and background. After the morphological processing, Kalman Filter is used to track and mark the multiple objects and Matlab is used to realize the algorithm. The feasibility is verified by video processing experiment, which can be applied in machine vision and video monitoring and processing.
作者 陈越 CHEN Yue(Putian University,Putian,Fujian 351100,China;Fujian Laser Precision Machining Engineering Technology Research Center,Putian,Fujian 351100,China)
出处 《龙岩学院学报》 2019年第2期7-13,共7页 Journal of Longyan University
基金 2018年莆田学院校内科研项目(2018018)
关键词 背景提取算法 形态学处理 卡尔曼滤波 视频处理 visual background extractor algorithm morphological processing Kalman Filter video processing
  • 相关文献

参考文献4

二级参考文献31

  • 1Lipton A J, Fujiyoshi H, Patil R S. Moving target classification and tracking from real-time video[C]//Proceedings, Fourth IEEE Workshop on Applications of Computer, Princeton, N J, May 21, 1998: 8-14.
  • 2Valera M, Velastin S A. Intelligent Distributed Surveillance Systems: A Review [J]. lEE Proceedings Vision, Image and Signal Proeessing(S1751-9632), 2005, 152(2): 192-204.
  • 3TONG Nian-nian, DUAN Xiao-hui. Research on detection algorithm for vehicle monitoring system [C]//The First Chinese Conference on Intelligent Surveillance, Beijing, April 24, 2002: 612-616.
  • 4王建平,刘伟,王金玲.一种视频运动目标的检测与识别方法[J].计算技术与自动化,2007,26(3):78-80. 被引量:7
  • 5Barnich O, Droogenbroeck M V. ViBe: a universal background subtraction algorithm for video sequences [ J ]. IEEE Transactions on Image Processing, 2011, 20 ( 6 ) : 1709 - 1724.
  • 6Maddalena L, Petrosino A. A self-organizing approach to background subtraction for visual surveillance applications [J]. IEEE Transactions on Image Processing ,2008,17 (7) : 1168 - 1177.
  • 7Mclvor A M. Background subtraction techniques [J]. Process of linage and Vision Computing,2001,136(2) :752 -756.
  • 8Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction[M ]. Berlin: Springer Berlin Heidelberg ,2000:751 - 767.
  • 9Lucas D, Kanade T. An iterative image registration technique with an application to stereo vision[ C]// Proceedings of the 7th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc, 1981: 674 - 679.
  • 10Bouwmans T, Porikli F0 Hoferlin B, et aI. Background modeling and foreground detection for video surveillance [ M]. Waretown :Chapman and HalI/CRC,2014.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部