摘要
对具有外界激发的学习神经元模型的非线性动力学行为在理论上进行了分析,计算了该模型动力学系统的Hopf分岔、Lyapunov指数谱及维数,利用劳斯-霍尔维茨判据对系统的平衡点进行了讨论,并对该非线性系统的电路进行了详细的设计,利用电子工作平台将设计的实现动力学混沌行为的电路进行了仿真实验,探讨了电路的混沌行为特征,表明理论上的分析与电路设计的正确性、合理性,电路实现简单实用。
The nonlinear dynamics behavior with learning neural model of the outside arouse were studied. and the Hopf bifurcation of models of the dynamics system,Lyapunov index spectrum as well as Lyapunov dimension were calculated in theory. The balance of the system were studied using the Routh-Hurwitz criterion.In this paper,we designed the electric circuits of the nonlinear dynamics chaotic system,the electronic workbench was used to realize simulation experiment of the designed circuit of dynamic system,and the chaotic behavior characteristics of the circuit chaotic behavior characteristics of the circuit were discussed. The simulation experiment shows that theoretical analysis and the circuit design are correct and rational,and it is simple and practical for circuit implementation.
作者
陈军
CHEN Jun(Dingxi Campus,Gansu University of Traditional Chinese Medicine,Dingxi 743000,China)
出处
《贵州大学学报(自然科学版)》
2019年第1期13-20,共8页
Journal of Guizhou University:Natural Sciences
基金
国家自然科学基金项目资助(60871094)
甘肃省高等学校科研项目资助(No.2018A-176)
甘肃中医药大学定西校区校级项目资助(2017XJYB26)
关键词
余弦激发
神经元模型
HOPF分岔
电路实现
cosine excitation
neuron model
Hopf bifurcation
circuit implementation