期刊文献+

标准必要专利FRAND原则在大数据流通中的适用 被引量:1

Application of FRAND Principle of Standard Essential Patent in Large Data Circulation
下载PDF
导出
摘要 大数据时代,数据已经成为一种重要的战略资源,其流通和使用对于科技、经济、社会的发展至关重要。在对大数据的"大、多、低、流"的特性和数据在流通中的量大、多源、陈旧、不可再生、价值不明、可持续性、唯一性等特点进行分析的基础上,进一步分析标准必要专利FRAND原则在数据流通领域的主客观环境中适用的合理性和必然性,以确立FRAND原则在该领域的适用,进而保障数据市场竞争的合理有序和数据流通的合理高效以实现大数据的作用和价值。 In the era of big data, data has become an important strategic resource, and its circulation and use are crucial for the development of science, technology, economy and society. Based on the analysis of the characteristics of "Volume,Variety,Velocity,Value" of big data and the characteristics of large quantities, multiple sources, obsolete, non-renewable, unknown value, sustainability, and uniqueness of data in circulation, further analyze the rationality and inevitability of the application of the standard essential patent FRAND principle in the subjective and objective environment of data circulation, in order to establish the application of the FRAND principle in this field, and thus ensure the reasonable and orderly competition in the data market and the reasonable and efficient flow of data, to realize the role and value of big data.
作者 任延武 REN Yanwu(School of Humanities and Law, Hefei University of Technology,Hefei 230009 China)
出处 《盐城工学院学报(社会科学版)》 2019年第1期22-25,共4页 Journal of Yancheng Institute of Technology(Social Science Edition)
关键词 FRAND原则 数据自由流通 数据收集 公共利益 FRAND principle free circulation of data data collection public interest
  • 相关文献

二级参考文献93

  • 1Chris Anderson. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired, 2008, 16 (7).
  • 2Albert-L~iszl6 Barab~isi. The network takeover. Nature Physics, 2012,8(1): 14-16.
  • 3Reuven Cohen, Shlomo Havlin. Scale-Free Networks Are U1- trasmall. Physical Review Letters, 2003, 90,(5 ).
  • 4Tony Hey, Stewart Tansley, Kristin Tolle (Editors). The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft, 2009 October 16.
  • 5Big Data. Nature, 2008, 455(7 209): 1-136.
  • 6Dealing with data. Science, 2011,331 ( 6 018 ): 639-806.
  • 7Complexity. Nature Physics, 2012, 8( 1 ).
  • 8Big Data. ERCIM News, 2012, (89).
  • 9David Lazer, Alex Pentland, Lada Adamic et al. Computational Social Science. Science, 2009, 323 ( 5 915 ): 721-723.
  • 10The 2011 Digital Universe Study: Extracting Value from Chaos. International Data Corporation and EMC, June 2011.

共引文献1781

同被引文献19

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部