期刊文献+

基于改进蚁群算法的智能交通路径规划 被引量:5

Intelligent transportation system path planning based on improved ant colony algorithm
下载PDF
导出
摘要 社会的快速发展,带来了越来越严重的交通问题,长期以来导致环境污染和能源浪费。专家提出智能交通系统能够有效地改善交通问题,而路径寻优算法又是其中的关键点之一,但是原来研究的算法往往只是针对路径长短,没有考虑实际的路况和当时的情景。该文结合传统蚁群算法,模拟现实的路况和情景改进算法,并进行仿真和数据分析。仿真实验结果显示,改进蚁群算法在动态路径规划中具有良好的效果。 The rapid development of society has brought more and more serious traffic problems.It has caused environmental pollution and wasted energy for a long time.Experts suggest that intelligent transportation systems can effectively improve traffic problems,and path optimization algorithms are one of the key points.However,the original research algorithm is often only for the length of the path,without considering the actual situation and the situation at that time.In this paper,the traditional ant colony algorithm is used to simulate the realistic road conditions and scene improvement algorithms,and simulation and data analysis are performed.The simulation results show that the improved ant colony algorithm has a good effect in dynamic path planning.
作者 赵艳东 张申申 ZHAO Yandong;ZHANG Shenshen(Electronic Engineering and Automation College,Qingdao University of Science and Technology,Shandong Qingdao 266100,China)
出处 《工业仪表与自动化装置》 2019年第2期30-32,共3页 Industrial Instrumentation & Automation
关键词 智能交通系统 蚁群算法 路径寻优 intelligent transportation system ant colony algorithm path optimization
  • 相关文献

参考文献4

二级参考文献85

共引文献223

同被引文献42

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部