期刊文献+

融合宫颈细胞领域特征的多流卷积神经网络分类算法 被引量:13

Cervical Cell Features Based Multi-Stream Convolutional Neural Networks Classification Method
下载PDF
导出
摘要 细胞分类是宫颈癌计算机辅助诊断研究和应用的关键技术.针对通用深度学习分类算法在细胞分类中缺少领域知识指导这一局限性,提出一种基于数据驱动和宫颈细胞领域知识的多流卷积神经网络分类算法.文中算法以细胞和细胞核图像为输入,通过卷积神经网络提取图像特征,并根据宫颈细胞标准分级系统中领域知识提取人工设计特征,最后将上述2种特征进行拼接,并经过全连接层融合,构建适用于细胞分类的多流卷积神经网络.实验结果表明,文中算法在仅使用Alexnet作为基础网络的情况下,在Herlev宫颈细胞图像数据集上的正常与异常细胞的分类准确率达到99%,取得了该数据库上目前最好的分类结果;在Ideepwise数据集上,按照细胞学诊断报告的分级准确率为85%,相比单流网络提升3%. Cervical cell classification is a key problem for computer-aided cervical screening applications. Previous methods mainly focus on designing data-driven methods to learn classification models from labeled dataset, and the domain knowledge of cervical cells problem is seldom explored to further improve the classification performance. To address this problem, we propose a multi-stream convolutional neural network classification algorithm built upon data-driven approach as well as cervical cell domain knowledge. The algorithm uses cell image, nucleus image and artificial designed features based on domain knowledge in the bethesda system(TBS) as input, and extracts multi-stream features through convolutional neural network.Finally, the above three-stream features are fused and then fed to a classification model to give a classification prediction. Experiments show that the classification accuracy of proposed algorithm based on Alexnet is99% on squamous epithelial cells from Herlev cervical cell database, the best reported classification performance on the database up to now. The method proposed achieves the classification accuracy of 85% on our Ideepwise database based on the TBS2014 standard, which gets a gain of 3% compared to the baseline single-stream networks.
作者 杨志明 李亚伟 杨冰 庞文博 田泽宁 王泳 Yang Zhiming;Li Yawei;Yang Bing;Pang Wenbo;Tian Zening;Wang Yong(Laboratory of Parallel Software and Computational Science, Institute of Software, Chinese Academy of Sciences, Beijing 100080;University of Chinese Academy of Sciences, Beijing 100049;Deepwise on Artificial Intelligence Robot Technology (Beijing) Co, Ltd, Beijing 100085)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第4期531-540,共10页 Journal of Computer-Aided Design & Computer Graphics
关键词 计算机辅助诊断 宫颈细胞 深度学习 卷积神经网络 computer-aided diagnosis cervical cell deep learning convolutional neural networks
  • 相关文献

参考文献3

二级参考文献33

  • 1岑坚敏,钱德英,王丁,曾仁海,林爱华,舒焰红,洪淡华,黄志宏.高危型人类乳头瘤病毒检测对不典型鳞状细胞分流监测的临床价值[J].中华妇幼临床医学杂志(电子版),2006,2(1):12-14. 被引量:21
  • 2钱德英,岑坚敏,王丁,曾仁海,林爱华,舒焰红,洪淡华,黄志宏.高危型人乳头状瘤病毒DNA检测与细胞学联合检查对子宫颈癌前病变筛查的研究[J].中华妇产科杂志,2006,41(1):34-37. 被引量:168
  • 3Belinson J,Int J Gynecol Cancer,1999年,9卷,411页
  • 4Sheets E,J Gynecol Technol,1995年,1卷,27页
  • 5Munoz N,Bosch FX.Epidemiologic classification of human papillomavirus types associated with cervical cancer[J].N Engl J Med,2003,348(6):518-527.
  • 6Ylitalo N,Sorensen P,Josefsson AM,et al.Consistent high viral load of human papillomavirus 16 and risk of cervical carcinoma in situ:a nested case-control study[J].Lancet,2000,355(9222):2194-2198.
  • 7Abba MC,Mouron SA.Association of human papillomavirus viral load with HPV 16 and high-grade intraepithelial lesion[J].Int J Gynecol Cancer,2003,13(2):154-158.
  • 8Hernández-Hernández DM,Ornelas-Bernal L.Association between high-risk papillomavirus DNA load and precursor lesions of cervical cancer in Mexican women[J].Gynecol Oncol,2003,90(2):310-317.
  • 9Sherman ME,Wang SS,Wheeler CM,et al.Determinants of human papillomavirus load among women with histological cervical intraepithelial neoplasia 3:dominant impact of surrounding low-grade lesions[J].Cancer Epidemiol Biomarkers Prev,2003,12(10):1038-1044.
  • 10Sun CA,Liu JF,Wu DM,et al.Viral load of high-risk human papillomavirus in cervical squamous intraepithelial lesions[J].Int J Gynaecol Obstet,2002,76(1):41-47.

共引文献487

同被引文献88

引证文献13

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部