期刊文献+

结合尺度不变特征的ORB算法改进 被引量:4

Improved ORB Algorithm with Invariant Scale Features
下载PDF
导出
摘要 针对ORB(ORiented Brief,方向描述符)算法不具备尺度不变性,且匹配点对错误较多等缺点,结合SURF(Speed-up Robust Features,加速稳健特征)与ORB提出一种新的算法。通过计算积分图像,使用盒子滤波器近似高斯滤波,构建尺度空间,通过Hessian矩阵检测出具备尺度不变的特征点;用ORB对特征点进行描述,采用Hamming距离完成粗匹配;使用改进的RANSAC(RANdom SAmple Consensus,随机抽样一致)减少其迭代次数,同时,去除错误的匹配点对。实验结果表明,在尺度变化时,改进算法的平均准确度为86.3%,约为ORB的3.1倍;综合对比时,改进算法的平均精度可达85.1%,是ORB的2.4倍,平均耗时高于ORB,但远低于SIFT,在不失精度的前提下有效地保证了鲁棒性和实时性。 In view of the fact that the ORB(ORiented Brief) algorithm does not have the scale invariance, and the matching points are more error-prone, a new algorithm combining SURF(Speed-up Robust Features) and ORB is proposed. By calculating the integral image and using the box filter to approximate the Gaussian filter,the scale space was constructed, and the feature points with the same scale were detected by the Hessian matrix. The feature points were described by ORB, and the rough matching was achieved by Hamming distance.The improved RANSAC(RANdom SAmple Consensus) was used to reduce the number of iterations, and at the same time, the wrong matching point pairs were removed. The experimental results show that the average accuracy of the improved algorithm is 86. 3% when the scale is changed, which is about 3.1 times that of ORB. The average accuracy of the improved algorithm is 85. 1%, which is 2. 4 times that of ORB, and the average timeconsuming is higher than that of ORB, but far lower than that of SIFT. The robustness and real-time performance are guaranteed effectively without lossing accuracy.
作者 卢健 何耀祯 陈旭 刘通 LU Jian;HE Yao-zhen;CHEN Xu;LIU Tong(School of Electronics and Information, Xi'an Polytechnic University, Xi'an 710048, China)
出处 《测控技术》 2019年第3期97-101,107,共6页 Measurement & Control Technology
基金 国家自然科学基金项目(51607133) 陕西省教育厅专项科学研究计划项目(17JK0332) 陕西省科技厅科技发展计划项目(2011K06-01) 西安市碑林区应用技术研发项目(GX1807)
关键词 ORB 尺度空间 HESSIAN矩阵 HAMMING距离 改进RANSAC ORB scale space Hessian matrix Hamming distance improved RANSAC
  • 相关文献

参考文献14

二级参考文献168

  • 1时永刚,邹谋炎.图像配准中统计型相似性测度的比较与分析[J].计算机学报,2004,27(9):1278-1283. 被引量:16
  • 2郑明玲,刘衡竹.遥感图像配准中特征点选择的高性能算法研究及其实现[J].计算机学报,2004,27(9):1284-1289. 被引量:17
  • 3李寒,牛纪桢,郭禾.基于特征点的全自动无缝图像拼接方法[J].计算机工程与设计,2007,28(9):2083-2085. 被引量:52
  • 4冷雪飞,刘建业,熊智.基于分支特征点的导航用实时图像匹配算法[J].自动化学报,2007,33(7):678-682. 被引量:33
  • 5Lowe D G. Distinctive image features from scale-invariant key-points[ J ]. International Journal of Computer Vision, 2004,60(2) :91 - 110.
  • 6Rafael Lemuz-Lopez, Miguel Arias-Estrada. herative closest SIFT formulation for robust feature matching [ A ]. Proceedings of the International Symposium on Visual Computing [ C ]. Springer Berlin/Heidelberg, 2006:502 - 513.
  • 7Krzysztof Slot, Hyongsuk Kim. Key points derivation for object class detection with SIFT algorithm [ A ]. Proceedings of International Conference on Artificial Intelligence and Soft Computing [ C ]. Springer Berlin/Heidelber, 2006:850 - 859.
  • 8Yun J H, Park R H. Self-calibration with two views using the scale-invariant feature transform [ A ]. Proceedings of the International Symposium on Visual Computing [ C ]. Springer Berlin/Heidelberg,2006:589 - 595.
  • 9Fischler M A, Bolles R C. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography [ J ]. Communications of ACM, 1981, 24(6) :381 -395.
  • 10Xing J, Miao Z J. An improved algorithm on image stitching based on SIFT heatures [ A ]. Proceedings of the Second International Conference on Innovative Computing, Information and Control[ C]. 2007:453.

共引文献368

同被引文献42

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部