期刊文献+

社会化阅读平台的信息查询提示机制优化 被引量:3

Optimization of Query Suggestion of Social Reading Network Based on User Behavior Feature Library
下载PDF
导出
摘要 为克服检索过程中的信息过载问题,提出一种查询提示优化方法,用于优化社会化阅读平台的查询提示效果。首先,利用基于查询词的标准化共现矩阵来构建用户行为特征库,并将这种特征库融入社会化阅读平台查询提示模块,结合其他历史检索信息来优化查询提示列表的提示效果。随后,通过模拟查询提示过程,分别对提示效果的丰富度和检全率进行量化计算。实验结果表明:提示结果在检全率和丰富性方面表现较好,对学习型用户来说其提示结果具有较好的预测性,进而从信息融合角度可更好地提升学习型用户的检索体验。 This paper aims to improve user searching experience by optimizing the query suggestions on social reading network. Firstly, a user behavior feature database (library) is constructed by using standardized co- occurrence matrix based on query words;this behavior library is integrated into the socialized reading platform query suggestions list, from which other historical searching information is introduced to optimize the effect of the query suggestions. Then, through the simulation of query prompt process, the richness and the recall rate of prompt effect are quantified separately. The results show the method can enhance the effectiveness of query suggestions in both recall rate and richness. For expert users, the suggestion results are better predictive, and the searching experience can be better improved from the perspective of information fusion.
作者 严中华 孟亚琪 程秀峰 YAN Zhonghua;MENG Yaqi;CHENG Xiufeng
出处 《图书馆论坛》 CSSCI 北大核心 2019年第4期101-109,共9页 Library Tribune
关键词 社会化阅读平台 查询提示 用户行为 优化研究 social reading network query suggestions user behavior optimization study
  • 相关文献

参考文献6

二级参考文献55

  • 1张敏,宋睿华,马少平.基于语义关系查询扩展的文档重构方法[J].计算机学报,2004,27(10):1395-1401. 被引量:55
  • 2Furnas GW, Landauer TK, Gomez LM, Dumais ST. The vocabulary problem in human-system communication. Communication of ACM, 1987,30(11):964~971.
  • 3Wen JR, Nie JY, Zhang HJ. Clustering user queries of a search engine. In: Proceedings of the 10th International World Wide Web Conference (WWW10). New York: ACM Press, 2001. 162~168.
  • 4Xu JX, Croft WB. Query expansion using local and global document analysis. In: Frei HP, Harman D, Schauble P, Wilkinson R,eds. Proceedings of the 19th Annual International SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 1996. 4~11.
  • 5Xu JX, Croft WB. Improving the effectiveness of information retrieval with local context analysis. ACM Transactions on Information Systems, 2000,18(1):79~112.
  • 6Deerwester S, Dumai ST, Furnas GW, Landauer TK, Harshman R. Indexing by latent semantic analysis. Journal of ACM Transactions on Information Systems, 2000,18(1):79~112.
  • 7Qiu Y, Frei H. Concept based query expansion. In: Korfhage R, Rasmussen EM, Willett P, eds. Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 1993.160~169.
  • 8Attar R, Fraenkel AS. Local feedback in full-text retrieval systems. Journal of the ACM, 1977,24(3):397~417.
  • 9Buckley C, Salton G, Allan J, Singhal A. Automatic query expansion using SMART. Technical Report, TREC-3, 1995. 69~80.
  • 10Ricardo B-Y, Berthier R-N. Modem Information Retrieval. England: Pearson Education Limited, 1999.

共引文献80

同被引文献59

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部