摘要
With the aim of simulating the harsh temperature condition of space, a thallium-activated cesium iodide crystal(CsI:Tl) detector readout with a PIN photodiode(CsI:Tl(PD)) and with a silicon photomultiplier(CsI:Tl(SiPM)) is investigated over a temperature range from-40 to 40 ℃. With the increase in temperature, the output signal increases by ~ 24% with CsI:Tl(PD) and decreases by ~69% with CsI:Tl(SiPM). To reduce the effect of temperature in outer space, a method of bias voltage compensation is adopted for CsI:Tl(SiPM). Our study demonstrates that after correcting the temperature the variation in the analog-to-digital converter's amplitude is< 3%.
With the aim of simulating the harsh temperature condition of space, a thallium-activated cesium iodide crystal(CsI:Tl) detector readout with a PIN photodiode(CsI:Tl(PD)) and with a silicon photomultiplier(CsI:Tl(SiPM)) is investigated over a temperature range from-40 to 40 ℃. With the increase in temperature, the output signal increases by ~ 24% with CsI:Tl(PD) and decreases by ~69% with CsI:Tl(SiPM). To reduce the effect of temperature in outer space, a method of bias voltage compensation is adopted for CsI:Tl(SiPM). Our study demonstrates that after correcting the temperature the variation in the analog-to-digital converter's amplitude is< 3%.
基金
supported by the National Natural Science Foundation of China(Nos.11575257,11575269,and U1732134)
the Youth Innovation Promotion Association of the Chinese Academy of Science(No.2015342)