期刊文献+

Large unsaturated room temperature negative magnetoresistance in graphene foam composite for wearable and flexible magnetoelectronics 被引量:1

原文传递
导出
摘要 Room temperature positive magnetoresistance(PMR)in graphene is a conventional phenomenon but we observed large negative magnetoresistance(NMR)in graphene foam(GF)/polydimethylsiloxane(GF/PDMS)at room-mperature for the first time.The largest NMR^35%was detected at 250 K,while PMR is observed below 200 K.Furthermore,PMR at all temperatures is observed in regular GF specimens,hence,NMR is the result of the infiltration with the electrically insulating polymer.Forward interference and wavefunction shrinkage model has been employed to understand the transport mechanism in GF/PDMS.A critical temperature^224 Kfor switching between NMR and PMR is observed at the crystallization-mperature of PDMS,suggesti ng a cha nge in polymer chai n con formation may be a major reason leading to NMR in GF/PDMS specimens thus role of mechanical properties of PDMS in NMR cannot be ignored and observed locally via specially;resolved atomic force microscopy.In addition,storage modulus and heat flow study shows similar transition temperature(~200 K)of NMR to PMR and provide an evidence of mechanical stable specimens.As is known,large,tunable,and unsaturated NMR at room temperature is very useful for future facile practical shapeable magnetoelectronic devices.
出处 《Nano Research》 SCIE EI CAS CSCD 2019年第1期101-107,共7页 纳米研究(英文版)
  • 相关文献

参考文献5

二级参考文献124

  • 1Bolotin, K. l.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008 146, 351-355.
  • 2Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3. 491-495.
  • 3Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902-907.
  • 4Ghosh, S.; Calizo, I4 Teweldebrhan, D.; Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett, 2008, 92, 151911.
  • 5Ghosh, S.; Nika, D. L.; Pokatilov, E. P.; Balandin, A. A. Heat conduction in graphene: Experimental study and theoretical interpretation. New J. Phys. 2009, 11, 095012.
  • 6Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.
  • 7Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197-200.
  • 8Xia, F. N.; Farmer, D. B.; Lin, Y.-M.; Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010, 10, 715-718.
  • 9Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487-496.
  • 10Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B. S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011,474, 64-67.

共引文献98

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部