期刊文献+

基于BP神经网络的开关磁阻电机建模及仿真 被引量:4

Modeling and Simulation of Switched Reluctance Motor Based on BP Neural Network
下载PDF
导出
摘要 为了改善开关磁阻电机的性能分析和控制效果,建立精确的开关磁阻电机模型是极其重要的。在获得准确的电机电磁特性基础上,利用神经网络所具有的非线性映射能力,建立开关磁阻电机非线性模型。本文采用基于附加动量法的BP神经网络建立开关磁阻电机磁链模型和转矩模型,同时在Matlab/Simulink平台上搭建电机控制系统模型。实验表明,该建模方法能满足开关磁阻电机驱动系统的高性能要求。 In order to improve the performance analysis and control effect of switched reluctance motor, it is very important to establish accurate switched reluctance motor model. Based on the accurate electromagnetic properties of the motor ,the non-linear model of the switched reluctance motor is established by using the nonlinear mapping ability of the neural network. In this paper, the flux linkage model and torque model of switched reluctance motor are established by BP neural network based on additional momentum method. At the same time, the model of motor control system is built on Matlab/Simulink platform. Experiments show that the modeling method can meet the high performance requirements of the switched reluctance motor drive system.
作者 饶哲宇 王进华 RAO Zhe-yu;WANG Jin-hua(School of Electrical Engineering and Automation, Fuzhou University,Fuzhou 350108,China)
出处 《电气开关》 2019年第1期37-40,44,共5页 Electric Switchgear
关键词 BP神经网络 建模 开关磁阻电机 BP neural network modeling switched reluctance motor
  • 相关文献

参考文献3

二级参考文献18

  • 1杨玉岗.开关磁阻电机最佳起动状态的仿真研究[J].煤炭学报,2004,29(B10):188-191. 被引量:4
  • 2Komatsuzaki Akitomo, Miki Ichiro. A position sensorless control method for SRM based on variation of phase inductance[ J]. IEEE Transactions on Industry Applications ,2007,127 ( 9 ) : 1 023-1 029.
  • 3Chen Hao, Zhang Dong, Cong Ziyue, et al. Fuzzy logic control for switched reluctance motor drive [ A ]. Proceedings of 2002 International Conference on Machine Learning and Cybernetics[ C ]. 2002: 145-149.
  • 4Mese E, Torry D A. An approach for sensorless position estimation for switched reluctance motors using artificial neural networks[ J]. IEEE Transaction on Power Electronics,2002,17 (1) :66-75.
  • 5Christopher A Hudson, Lobo N S, Krishnan R. Sensorless control of single switch-based switched reluctance motor drive using neural network[ J]. IEEE Transctions on Industrial Electionics ,2008,55 ( 1 ) : 321-329.
  • 6Lu Wenzhe, Keyhani A, Fardoun A. Neural network-based modeling and parameter identification of switched reluctance motors [ J ]. IEEE Trans. on Energy Conversion, 2003,18 ( 2 ) : 284- 290.
  • 7Wai Rongjong, Duan Rouyong, Lee Jengdao, et al. Wavelet neural network control for induction motor drive using sliding-mode design technique [ J]. IEEE Transactions on Industrial Electronics ,2003,50 (4) :733-748.
  • 8Jyh-Shing Roger Jang. ANFIS: adaptive-network-based fuzzy inference systems[J]. IEEE Trans. on Systems, Man And Cybernetics, 1993,23 (3) :665-685.
  • 9Sami Kanerva. Simulation of electricalmachines, circuits and control systems using finite element method and system simulator[ D]. Helsinki : Helsinki University of Technology ,2005.
  • 10Tran Haoi L, Osowski S. Neuro-fuzzy TSK network for approximation of static and dynamicfunctions [ J ]. Control and Cybernetics, 2002,31 (2) :309-326.

共引文献24

同被引文献35

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部