期刊文献+

在线社会网络中一种基于时空相似性的多源点定位方法 被引量:1

Detecting Multi-Sources Based on Similarity Between Time and Space in Social Networks
下载PDF
导出
摘要 针对在线社会网络中多源点定位问题,当源点数量不确定时,定位准确率有待提高。采用设置探查节点的方式,基于探查节点接收时刻序列分布与网络空间结构具有相似性的特点,提出一种基于时空相似性的多源点定位方法。首先,分析多次接收信息节点的源点指向性,采用重启式随机游走算法确定源点备选集;然后,以非多次接收信息节点与备选源点的时空相似性为基础,将定位问题转化为聚类问题;最后,采用改进的近邻传播算法确定源点数量和位置。实验分析表明,相对于其他算法,该算法可提升源点定位的准确性,减少误差跳数。 The accuracy of locating uncertain number of sources is to be promoted in social network. In this paper we study the diffusion sources locating problem by learning from information diffusion data collected from only a small subset of network nodes. A method for detecting multi-sources based on similarity between time and space in social network (DeMSS) is proposed . First, the directivity of detecting nodes which receive more than one message is analyzed, and potential source nodes set is selected by random walk with restart. Then, according to the similarity between potential source nodes and detecting nodes which receive no more than one message, sources locating is converted to clustering. Finally the sources are located using affinity propagation algorithm. We test and compare the DeMSS using real-world networks to demonstrate its better performance.
作者 赵宇 汤红波 李丹浓 ZHAO Yu;TANG Hongbo;LI Dannong(National Digital Switching System Engineering and Technological R&D Center, Zhengzhou 450002, China;National Engineering Laboratory for Mobile Network Security, Beijing 100876, China;Information Engineering University, Zhengzhou 450001, China)
出处 《信息工程大学学报》 2018年第4期404-409,共6页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(61521003) 国家863计划资助项目(2015AA01A706)
关键词 在线社会网络 源点定位 不确定源点数量 近邻传播算法 online social network sources locating uncertain number of sources affinity propagation
  • 相关文献

参考文献1

二级参考文献29

  • 1Lee H W. Global Risks Report. World Economic Forum 301211. 2013.
  • 2Adrien G, Hakim H, Cecile F, et al. Information diffusion in online social networks: a survey. ACM SIGMOD Record, 2013, 42:17-28.
  • 3Ernesto E, Naomichi H, Michele B. The physics of communicability in complex networks. Phys Reports, 2012, 514: 89-119.
  • 4Jurij L, Lala A A, Bernardo A H. The dynamics of viral marketing. In: Proceedings of the 7th ACM Conference on Electronic Commerce. New York: ACM, 2006. 228-237.
  • 5Mark G. Threshold models of collective behavior. American J Sociol, 1978, 83:1420-1443.
  • 6Mislove A, Massimiliano M, Krishna P G, et al. Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, San Diego, 2007. 29-42.
  • 7Kempe D, Jon K, lva T. Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, 2003. 137-146.
  • 8Easley D, Kleinberg J. Networks, Crowds, and Markets. Cambridge Univ Press, 2010, 6:6.1.
  • 9Comin C H, Costa L. Identifying the starting point of a spreading process in complex network. Phys Rev E, 2011, 84: 1903-1904.
  • 10Shah D, Zaman T. Detecting sources of computer viruses in networks: theory and experiment. In: Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, New York, 2010. 203-214.

共引文献1

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部