期刊文献+

基于互质采样的宽带信号快速盲检测算法

Speedy and Blind Detection Algorithm for Wideband Signals Using Coprime Sampling
下载PDF
导出
摘要 针对宽带信号的快速盲检测,提出一种基于互质采样的新算法。算法首先分析循环频率等于零时循环自相关矩阵的特性,并利用两路互质的欠采样序列对其进行估计;然后构造CAV(covariance absolute value)检测统计量,在互质采样的基础上重新推导检测门限,最终实现对非平稳信号的检测。此外,探究其它检测方法的可行性和广义互质采样的实用性。仿真结果表明,该算法采样速率低,计算复杂度小,无需任何先验信息,能够解决快速盲检测问题。 For speedy and blind detection of wideband signals,a novel algorithm based on coprime sampling is proposed.Firstly,under the condition that cyclic frequency equals zero,the property of the cyclic autocorrelation matrix is analyzed and two coprime sub-Nyquist sampling sequences are utilized for its estimation.Secondly,with the test statistics in covariance absolute value (CAV) algorithm,the threshold is deduced on the basis of coprime sampling,and the detection on non-stationary signals is finally implemented.Furthermore,the feasibility of other detection methods and practicability of generalized coprime sampling are explored.Simulation results demonstrate that the proposed algorithm is a better solution with the advantage of lower sampling rate,less complexity and no priori information.
作者 王大海 潘一苇 彭华 WANG Dahai;PAN Yiwei;PENG Hua(Unit 61541, Beijing 100000, China;Information Engineering University, Zhengzhou 450001, China)
机构地区 [ 信息工程大学
出处 《信息工程大学学报》 2018年第4期422-427,共6页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(61401511 U1736107)
关键词 快速盲检测 宽带信号 互质采样 CAV算法 循环自相关 speedy and blind detection wideband signals coprime sampling covariance absolute value algorithm cyclic autocorrelation
  • 相关文献

参考文献2

二级参考文献20

  • 1Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4) : 1289-1306.
  • 2Candes E J, Wakin M B. An introduction to compressive sampling[ J]. IEEE Signal Processing Magazine, 2008, 25 (2) : 21-30.
  • 3Christian R. Berger, Wang Z H, Huang J Z, and Zhou S L. Application of Compressive Sensing to Sparse Channel Estimation [ J ]. IEEE Communications Magazine, 2010 : 164-174.
  • 4Tomas Tuma, Sean Rooney, Paul Hurley. On the Appli- cability of Compressive Sampling in Fine Grained Proces- sor Performance Monitoring[ C ]//Proceedings of the 14th IEEE International Conference on Engineering of Complex Computer Systems(ICECCS). 2009 : 210-219.
  • 5Ma J W, Frandois-Xavier Le Dimet. Debluring from High- ly Incomplete Measurements for Remote Sensing[ J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47 (3) : 792- 802.
  • 6Matthew A. Herman and Thomas Strohmer. High-Resolu- tion Radar via Compressed Sensing[ J]. IEEE Transactions on Signal Processing, June 2009, 57(6) : 2275-2284.
  • 7Laura B. Montefusco, Damiana Lazzaro, Serena Papi. A Fast Compressed Sensing Approach to 3D MR Image Re- construction[ J]. IEEE Transactions on Medical Imaging, MAY 2011, 30(5) : 1064-1075.
  • 8Needell D, Tropp J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples [ J ]. Appl. Comp Harmonic Aal, 2009, 76(3): 301-321.
  • 9Mark A. Davenport, Petros T. Boufounos, Michael B. Wakin, and Richard G. Baraniuk. Signal Processing With Compressive Measurements [ J ]. IEEE Journal of Selected Topics In Signal Processing, 2010, 4(2) : 445-460.
  • 10Haupt J, Nowak R. Compressed sampling for signal detec- tion[ C ]//IEEE Int. Conf. on Acoustics, Speech, and Signal Processing ( ICASSP), Honolulu, Hawaii : 2007 : 1509-1512.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部