期刊文献+

词义层级上的专家系统问题相似度计算优化 被引量:1

Similarity Calculation Optimization of Expert System at Lexical Level
下载PDF
导出
摘要 词向量(Word2Vec)是近些年来自然语言处理领域的重要算法,在近几年的人工智能发展中占有极其重要的地位。通过向量空间的形式对每一个词进行标志,进而在概率方面上对词进行表示。Word Mover Distance算法是Earth Mover Distance的一个特殊形式,用来计算一组向量之间最短距离。文章使用上述两个算法作为基底,对词向量进行相关的空间映射预处理操作,作为WMD(word mover distance)的输入参数,最终可以得到句子间相似度得分。实验表明,该方法使相似语句与不相关语句之间的距离差距更大,且在专家系统中相似问句之间的距离更加紧密,更能显著刻画句子之间的语义相似程度,有利于增加短文本匹配的准确度。 Word vector (Word2Vec) is an important algorithm in the field of natural language processing in recent years. Accordingly, it has a very important position in the development of artificial intelligence. It can express each word in the form of vector space, and it can express the word in terms of probability. The Word Mover Distance algorithm is a special form of the Earth Mover Distance used to calculate the shortest distance between a set of vectors. Based on the above two algorithms, the article uses the word vector for the relevant spatial mapping preprocessing operation to get word mover distance (WMD) input parameters, and ultimately the similarity score of two words could be obtained. Experiments show that the method can make the distance between the similar statements and the distance between the irrelevant statements greater, and the distance between the similar question sentences in the expert system closer. Thus, the semantics between sentences similarity is more clearly described, so as to increase the accuracy of short text matching.
作者 乔猛 刘慧君 梁光辉 QIAO Meng;LIU Huijun;LIANG Guanghui(Institute of Computer, Chongqing University, Chongqing 400000, China;Information Engineering University, Zhengzhou 450001, China)
出处 《信息工程大学学报》 2018年第4期447-452,共6页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(61572518)
关键词 专家系统 词向量 WMD 空间映射 相似度计算 expert system word vector WMD spatial mapping similarity calculation
  • 相关文献

参考文献1

二级参考文献33

  • 1蔡自兴,Durkin J,龚涛.高级专家系统:原理、设计及应用[M].北京:科学出版社,2006.
  • 2Liao S H.Expert system methodologies and applications-A decade review from 1995 to 2004[J].Expert Systems with Applications.2005,28(1):93-103.
  • 3Prasad R,Ranjan K R,Sinha A K.AMRAPALIKA:An expert system for the diagnosis of pests,diseases,and disorders in Indian mango[J].Knowledge-Based Systems,2006,19(1):9-21.
  • 4Lyu J J,Chen M N.Automated visual inspection expert system for multivariate statistical process control chart[J].Expert Systems with Applications,2009,36(3):5113-5118.
  • 5Wang Y D,Lim E P,Hwang S Y.Efficient mining of group patterns from user movement data[J].Data & Knowledge Engineering,2006,57 (3):240-282.
  • 6Zheng H F,Chen L D,Han X Z,et al.Classification and regression tree (CART) for analysis of soybean yield variability among fields in Northeast China:The importance of phosphorus application rates under drought conditions[J].Agriculture,Ecosystems & Environment,2009,132(1):98-105.
  • 7Shiue W,Li S T,Chen K J.A frame knowledge system for managing financial decision knowledge[J].Expert Systems with Applications,2008,35(3):1068-1079.
  • 8Dibuz S.A frame-based approach to conformance testing[J].Microprocessing and Microprogramming,1993,39(2):191-194.
  • 9Sorenson D,Grissom C K,Carpenter L,et al.A frame-based representation for a bedside ventilator weaning protocol[J].Journal of Biomedical Informatics,2008,41 (3):461-468.
  • 10Cai J F,He Z H,Chen C W.A novel frame-level bit allocation based on two-pass video encoding for low bit rate video streaming applications[J].Journal of Visual Communication and Image Representation,2006,17(4):783-798.

共引文献126

同被引文献31

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部