摘要
The most advantageous property of magnesium(Mg)alloys is their density,which is lower compared with traditional metallic materials.Mg alloys,considered the lightest metallic structural material among others,have great potential for applications as secondary load components in the transportation and aerospace industries.The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability.Given their hexagonal close packed structure,the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twiuning and basal slips.However,for Mg alloys with shrinkage porosities and inclusions,fatigue cracks will preferentially initiate at these defects,remarkably reducing the fatigue lifetime.In this paper,some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed,in cluding the 3 followings:1)Fatigue crack initiation of as-cast Mg alloys,2)influence of microstructure on fatigue crack initiation of wrought Mg alloys,and 3)the effect of heat treatment on fatigue initiation mechanisms.Moreover,some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.
基金
the National Natural Science Foundation of China(Grant Nos.51701129,51271183 and 51301172)
Initiation Foundation of Shenyang Ligong University for Doctoral Research
the National Basic Research Program of China(973 Program)(Grant No.2013CB632205)
the National Key Research and Development Program of China(Grant No.2016YFB0301105)
Innovation Fund of Institute of Metal Research,Chinese Academy of Sciences.