摘要
Molecularly imprinted polymers(MIPs)exhibit high selectivity resulting from imprinted cavities and superior performance from functional materials,which have attracted much attention in many fields.However,the combination of MIPs film and functional materials is a great challenge.In this study,hemin/graphene hybrid nanosheets(H-GNs)were used to initiate the imprinted polymerization by catalyzing the generation of free radicals.Thus,MIPs using sulfamethoxazole as the template was directly prepared on the surface of H-GNs without any film modification.Most importantly,the template could be absorbed on the H-GNs to enhance the number of imprinted sites per unit surface area,which could improve the selectivity of MIPs film.Thus,the composites could exhibit high adsorption capacity(29.4 mg/g),imprinting factor(4.2)and excellent conductivity,which were modified on the surface of electrode for rapid,selective and sensitive detection of sulfamethoxazole in food and serum samples.The linear range was changed from 5μg/kg to 1 mg/g and the limit of detection was 1.2μg/kg.This sensor was free from interference caused by analogues of sulfamethoxazole,which provides a novel insight for the preparation of MIPs-based sensor and its application in food safety monitoring and human exposure study.