期刊文献+

基于小波熵的滚动轴承早期微弱故障信息提取 被引量:4

Early Weak Fault Information Extraction of Rolling Bearing Based on CWT-entropy
下载PDF
导出
摘要 滚动轴承产生早期微弱故障时,故障信息会被淹没在强背景噪声和其他振动源信号中,还会受到低频效应影响,这使得传统的频谱分析很难找到这些被淹没的故障信息。针对这一问题,本文提出一种基于小波熵的故障信息提取技术,首先对测试到的振动信号进行连续小波变换(CWT),获得时间-尺度谱,再计算时频矩阵中每一个尺度下的信号的熵,最后选取熵最小的尺度进行频谱分析。运用该方法对设置了外环故障、内环故障、滚珠故障的三种滚动轴承的振动信号进行了分析,并与传统的傅里叶变换(FFT)和包络解调分析方法进行了对比。分析结果表明,基于小波熵的分析方法能更有效地提取出振动信号中的故障频率信息。最后把该方法应用到某型涡轴发动机的主轴承故障诊断中,成功提取出了故障频率信息,实现了对滚动轴承进行早期故障检测。 When the early failure was generated in rolling bearings, the fault information was submerged in strong background noises and other vibration signals, and also affected by the low frequency effect. It is difficult to find these fault information by traditional spectral analysis methods. This paper presents a new method of extracting weak fault information called wavelet entropy for this problem. Firstly, the measured vibration signalis processed with Continuous Wavelet Transform(CWT) to obtain the time-scalematrix. Secondly, the entropy of the signal under each scalewas computed. And then, the scale with the minimal entropy value was selected for spectrum analysis. This method was applied to analyzing the vibration signals of bearings under three kinds of typical fault(with damage on outer race,inner race and ball respectively), and it is found that the wavelet entropy is more effective in extracting the periodic impulses features produced by localized bearing damage than FFT and the traditional envelope demodulation analysis.
作者 刘杰薇 王平 徐福建 蒋裴仪 Liu Jiewei;Wang Ping;Xu Fujian;Jiang Peiyi(AECC Hunan Aviation Powerplant Research Institute,Zhuzhou 412002, China;Key Laboratory of Aero-engine Vibration Technology, Aero Engine Corporation of China, Zhuzhou 412002, China;Zhengzhou University of Aeronautics, Zhengzhou 450046,China)
出处 《航空科学技术》 2019年第2期66-73,共8页 Aeronautical Science & Technology
基金 航空科学基金(2013ZB08001)~~
关键词 滚动轴承 小波变换 故障诊断 rolling bearing wavelet transform entropy fault diagnosis
  • 相关文献

参考文献2

二级参考文献10

  • 1(美)崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 2Lin Jing,Zhang Aimin.Fault Feature SeparationUsing Wavelet-ICA Filter[J].NDT&E Interna-tional,2005,38(6):421-427.
  • 3Fan Xianfeng,Liang Ming,Yeap T H,et al.AJoint Wavelet Lifting and Independent ComponentAnalysis Approach to Fault Detection of RollingElement Bearings[J].Smart Materials&Struc-tures,2007,16(5):1973-1987.
  • 4Hyvarinen A,Oja E.A Fast Fixed-point Algo-rithm for Independent Component Analysis[J].Neural Comput,1997,9(7):1483-1492.
  • 5陈克兴,李川奇.设备状态监测与故障诊断技术[M].北京:科学技术文献出版社,1999.
  • 6The Case Western Reserve University Bearing Data Center Website.Bearing Data Center Seeded Fault Test Data[EB/OL].[2010-05-04].http://www/eecs/cwru/edu/laboratory/bearing/.
  • 7Guo H,IEEE Trans Signal Procesing Letters,1996年,3卷,1期,10页
  • 8程正兴(译),小波分析导论,1995年
  • 9Liang J,Proc.Int. Conf. Image Processing,1994年,66页
  • 10彭耿,黄知涛,姜文利,周一宇.单通道盲信号分离研究进展与展望[J].中国电子科学研究院学报,2009,4(3):268-277. 被引量:25

共引文献97

同被引文献30

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部