期刊文献+

Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs

原文传递
导出
摘要 Let ■ be a k-uniform hypergraph on n vertices with degree sequence △= d1≥…≥ dn =δ. In this paper, in terms of degree di , we give some upper bounds for the Z-spectral radius of the signless Laplacian tensor (Q(■)) of ■. Some examples are given to show the efficiency of these bounds.
机构地区 School of Mathematics
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2019年第1期17-24,共8页 中国高等学校学术文摘·数学(英文)
基金 Science and Technology Foundation of Guizhou Province (Qian Ke He Ji Chu [2016]1161) Natural Science Foundation of Guizhou Province (Qian Jiao He KY [2016]255) Doctoral Scientific Research Foundation of Zunyi Normal College (BS[2015]09) Yanmin Liu was supported by the National Natural Science Foundations of China (Grant No. 71461027) Science and Technology Talent Training Object of Guizhou Province Outstanding Youth (Qian Ke He Ren Zi [2015]06) Natural Science Foundation of Guizhou Province (Qian Jiao He KY [2014]295), 2013. 2014, 2015 Zunyi 15851 Talents Elite Project Funding Zunyi Innovative Talent Team (Zunyi KH (2015)38) Junkang Tian was supported by the Natural Science Foundation of Guizhou Province (Qian Jiao He KY [2015]451) Science and Technology Foundation of Guizhou Province (Qian Ke He J Zi [2015]2147) Xianghu Liu was supported by the Guizhou Province Department of Education Fund (KY[2015]391,[2016]046) Guizhou Province Department of Education Teaching Reform Project ([2015]337) Guizhou Province Science and Technology Fund (qian Ke He Ji Chu [2016]1160).
分类号 O [理学]
  • 相关文献

参考文献1

二级参考文献17

  • 1Bu C, Zhou J, Wei Y. E-cospectral hypergraphs and some hypergraphs determined by their spectra. Linear Algebra Appl, 2014, 459:397-403.
  • 2Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436: 3268-3292.
  • 3Cooper J, Dutle A. Computing hypermatrix spectra with the Poisson product formula. Linear Multilinear Algebra, 2015, 63:956-970.
  • 4Cvetkovic D, Rowlinson P, Simid S. An Introduction to the Theory of Graph Spectra. Cambridge: Cambridge University Press, 2010.
  • 5Hu S, Qi L. The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph. Discrete Appl Math, 2014, 169: 140-151.
  • 6Hu S, Qi L, Xie J. The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph. Linear Algebra Appl, 2015, 469:1-27.
  • 7Khan M, Fan Y. On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs, arXiv: 1408.3303.
  • 8Lira L H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multisensor Adaptive Processing. 2005, 129-132.
  • 9Pearson K, Zhang T. On spectral hypergraph theory of the adjacency tensor. Graphs Combin, 2014, 30:1233-1248.
  • 10Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部