期刊文献+

有关一类H_+矩阵线性互补问题的修正模系矩阵分裂迭代方法 被引量:1

A Modified General Modulus-based Matrix Splitting Method for Linear Complementarity Problems of H_+-matrices
原文传递
导出
摘要 我们在本文建立了一类H+矩阵线性互补问题的修正模系矩阵分裂迭代方法并且给出了其收敛性分析.此外,我们也考虑了在给定方法下的最优参数选取问题.我们得出的修正方法是对[Xu W W, Liu H, A modified general modulus-based matrix splitting method for linear complementarity problems of H-matrices, Linear Algebra. Appl., 2014, 458:626-637]中方法2.1的一个修正.同时,我们也对[Xu W W,Modified modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra. Appl., 2015, 5:748-760]中方法3.1和方法3.2有关解的等价性证明作了补充说明.最后,我们给出的数值例子也表明了修正方法的有效性. In this paper we establish a modified general modulus-based matrix splitting iteration method for solving the large sparse linear complementarity problems of H_+-matrix and present the convergence analysis. In addition, the optimal parameters are considered under the given methods and we supplement the proof of equivalence of(z,r) from Methods3.1 and 3.2 in [2] and the solution of the original linear complementary problem LCP(q, A).Finally, we give a numerical example, which illustrates that the modified method is efficient.
作者 朱磊 徐玮玮 殷俊锋 ZHU Lei;XU Weiwei;YIN JUNFENG(Nanjing Agricultural University, Nanjing 210031, China;School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China;School of Mathematical Sciences, Tongji University, Shanghai 200092, China)
出处 《应用数学学报》 CSCD 北大核心 2019年第1期111-120,共10页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(U1733201 U1533202)项目经费 江苏省自然科学青年基金(BK20130985)资助项目
关键词 线性互补问题 模系矩阵分裂迭代方法 H+矩阵 linear complementarity problem modulus-based matrix splitting method H+-matrix
  • 相关文献

参考文献1

二级参考文献17

  • 1Bai D and Brandt A. Local Mesh Refinement Multilevel Techniques[J]. SIAM Journal on Scientific and Statistical Computing, 1987, 8: 109-134.
  • 2Black F and Scholes M. The Pricing of Options and Corporate Liabilities[J]. The Journal of Political Economy, 1973, 81: 637-654.
  • 3During B, Fournie M and Jiingel A. High Order Compact Finite Difference Schemes for A Non- linear Black-Scholes Equation[J]. International Journal of Theoretical and Applied Finance, 2003, 6: 767-789.
  • 4Giles M B and Carter R. Convergence Analysis of Crank-Nicolson and Rannacher Time- Marching[J]. Journal of Computational Finance, 2006, 9: 89-112.
  • 5Karaa S. A High-Order Compact ADI Method for Solving Three-Dimensional Unsteady Convection-Diffusion Problems[J]. Numerical Methods for Partial Differential Equations, 2006, 22: 983-993.
  • 6Karaa S and Zhang J. High Order ADI Method For Solving Unsteady Convection-Diffusion Problems[J]. Journal of Computational Physics, 2004, 198: 1-9.
  • 7Leentvaar C C W and Oosterlee C W. On Coordinate Transformation and Grid Stretching for Sparse Grid Pricing of Basket Options[J]. Journal of Computational and Applied Mathematics, 2008, 222: 193-209.
  • 8Oosterlee C W, Leentvaar C C W and Huang X Z. Accurate American Option Pricing by Grid Stretching and High Order Finite Differences equation. Working papers, DIAM, Delft University of Technology, the Netherlands, 2005.
  • 9Rannacher R. Finite Element Solution of Diffusion Problems with Irregular Data[J]. Numerische Mathematik, 1984, 43: 309-327.
  • 10Spotz W F and Carey G F. Extension of High-Order Compact Schemes to Time-Dependent Problems[J], Numerical Methods for Partial Differential Equations, 2001, 17: 657-672.

共引文献4

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部