期刊文献+

基于置信规则库的海基系统性能退化机理分析与预测 被引量:3

Degradation mechanism analysis and prediction of maritime based system performance using belief rule base
原文传递
导出
摘要 海基系统性能退化机理分析和预测对于提高海基系统的生存能力具有重要意义,但需要考虑不确定条件下的多种类型信息,传统方法在处理海基系统的不确定性时效果欠佳,而置信规则库(BRB)作为证据推理方法中的知识库又无法同时处理参数精度优化和组合爆炸问题.对此,采用BRB参数与结构联合优化方法,建立双层优化的海基系统置信规则库最优决策结构,以AIC(Akaike information criterion)为外层模型优化目标, MSE(Mean square error)为内层模型优化目标,实现同时优化的目的.对比模型输出和实际输出,并采用支持向量机(SVM)进行实验,结果表明,采用具有最优决策结构的海基系统置信规则库建模不仅可以降低模型中规则的数量,也可提高建模精度,验证了所提出方法的有效性. The degradation mechanism analysis and prediction of the maritime-based system performance is vital for improving the survivability of the maritime-based systems. However, traditional methods can’t deal with uncertainty well since many types of information under uncertainty need to be taken into consideration. As the knowledge base of the evidential reasoning approach, the belief rule base(BRB) can not optimize the modeling complexity and modeling accuracy at the same time. In this study, the structure and parameters of the BRB are jointly optimized to construct a bi-level maritime-based system BRB model. In the bi-level model, the Akaike information criterion(AIC) and mean square error(MSE) are used as the upper-level and lower-level optimization objectives, respectively. By comparing the model outputs with actual outputs, the results of the experiment using the support vector machine(SVM) show that,the optimized BRB can not only reduce the number of rules, but also achieve the highest modeling accuracy, and the effectiveness of the proposed method is verified.
作者 韩润繁 陈桂明 常雷雷 凌晓东 HAN Run-fan;CHEN Gui-ming;CHANG Lei-lei;LING Xiao-dong(College of Combatant Logistic,Rocket Force University of Engineering,Xi'an 710025,China;China SatelliteMaritime Tracking and Control Laboratory,Jiangyin 214431,China)
出处 《控制与决策》 EI CSCD 北大核心 2019年第3期479-486,共8页 Control and Decision
基金 国家自然科学基金项目(71601180)
关键词 海基系统 退化分析 预测 置信规则库 maritime based system degradation analysis prediction belief rule base
  • 相关文献

参考文献1

二级参考文献19

  • 1Yang J B, et al. Optimization models for training belief rule based systems[J]. IEEE Transactions on Systems, Man, and Cybernetics -- Part A: Systems and Humans, 2007,37 (4) : 569 - 585.
  • 2Yang J B, et al. Belief rule-base inference methodo- logy using the evidential reasoning approach- RIMER[J]. IEEE Transactions on System, Man and Cybernetics -- Part A: Systems and ttumans, 2006,36(2) :266-285.
  • 3Liu J, et al. Self-tuning of fuzzy belief rule bases forengineering system safety analysis [J]. Annals of Operations Research, 2008,163 (1) : 143 - 168.
  • 4Zhou Z J, et al. Online updating belief-rule-based system for pipeline leak detection under expert intervention[J]. Expert Systems With Applications, 2009,36 (4) : 7700-7709.
  • 5Hu C H, et al. Dynamic evidential reasoning algorithm for systems reliability prcdiction [J]. International Journal of Systems Science, 2010, 41 (7): 783-796.
  • 6Kong G L, et al. Applying a belief rule-base inference methodology to a guideline-based clinical decision support system[J]. Expert Systems, 2009, 26(5): 391 - 408.
  • 7Tang D W, et al. A methodology to generate a belief rule base for customer perception risk analysis in new product development [J]. Expert Systems with Applications, 2010.
  • 8Liu J, et al. Improving nuclear safeguards evaluation through enhanced belief rule-based inference methodology[J].International Journal of Nuclear Knowledge Management, 2009,3 (3) : 312 - 339.
  • 9常瑞 王红卫 杨剑波.基于梯度法和二分法的置信规则库参数训练方法.系统工程,2007,25:287-291.
  • 10Liu J, et al. Optimization algorithm for learning consistent belief rule base from examples[J]. Journal of Global Optimization, 2010.

共引文献5

同被引文献27

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部