期刊文献+

基于多指标融合的虹膜图像质量评估方法 被引量:3

A Method of Quality Assessment on Iris Images Based on the Multi-index Integration
下载PDF
导出
摘要 虹膜图像质量评估是虹膜识别系统中的重要模块,通过质量评估来摒弃质量较差的虹膜图像,能显著提升虹膜识别系统的性能。虹膜图像质量一般会受到多种因素的影响,单一或少数指标都不能准确客观地进行评估,因此提出了一种新颖的多指标融合的虹膜图像质量评估方法,选取可用虹膜区域、清晰度、虹膜半径、虹膜-瞳孔对比度、虹膜-巩膜对比度、瞳孔扩张性和灰度利用率这7个质量指标,结合GA-BP神经网络进行多指标融合,预测虹膜图像的综合质量评估分数。在CASIA虹膜图像库中进行验证,实验结果表明,该方法可以客观准确地评估虹膜图像的质量,对虹膜识别的性能有很强的可预测性。 The quality evaluation of iris images is an important module in iris recognition system. And the performance of iris recognition system can be greatly improved by abandoning the poor quality of iris images through evaluation. The quality of iris images can be generally affected by a variety of factors. The assessment method using one or two factors cannot evaluate iris images’ quality accurately and objectively, hence a multi-index integration method for evaluating the quality of iris images is proposed. And seven quality factors, including usable iris area, sharpness, iris radius, iris-pupil contrast, iris-sclera contrast, pupil expandability and gray utilization ratio are selected. Multiple factors fusion is combined with GA-BP neural network to predict the comprehensive quality assessment score of iris images. The algorithm is verified in the CASIA data set, and the experiment result shows that the method can select good quality images and has a strong predictability in iris recognition.
作者 晁静静 沈文忠 宋天舒 滕童 CHAO Jing-jing;SHEN Wen-zhong;SONG Tian-shu;TENG Tong(School of Electronic and Information Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处 《仪表技术》 2019年第3期24-28,共5页 Instrumentation Technology
基金 国家自然科学基金项目(61772327) 上海市科委地方能力建设项目(15110600700)
关键词 虹膜图像 质量评估 多指标融合 GA-BP神经网络 iris image quality assessment multi-index integration GA-BP neural network
  • 相关文献

参考文献5

二级参考文献26

  • 1穆阿华,周绍磊,刘青志,徐进.利用遗传算法改进BP学习算法[J].计算机仿真,2005,22(2):150-151. 被引量:27
  • 2孟浩,徐翠平.虹膜识别算法的研究[J].哈尔滨工程大学学报,2006,27(3):400-403. 被引量:9
  • 3史鹏举 孙光民.虹膜识别系统的研究.计算机应用研究,2004,:509-511.
  • 4张晶,白冰,苏勇.基于贝叶斯网络的电视节目收视率预测研究[J].科学技术与工程,2007,7(19):5099-5102. 被引量:16
  • 5Wildes R P,Asmuth J C,Hanna K J,et al. Automated,Non-invasive Iris Recognition System and Method [P]. US Patent 5572596,1996.
  • 6Daugman J G. How Iris Recognition Works [OL]. http://www.cl.cam.ac.uk/users/jgd1000/,2001.
  • 7Wildes R P. Iris recognition: An emerging biometric technology [J]. Proceedings of the IEEE,1997,85(9): 1348-1363.
  • 8Daugman J G. High confidence visual recognition of persons by a test of statistical independence [J]. IEEE Trans on Pattern Anal Machine Intelligence,1993,15(11): 1148-1161.
  • 9Kasilingam D, Junfeng Wang, Jong-Sen Lee, et al. Focusing of synthetic aperture radar images of moving targets using minimum entropy adaptive filters [J]. IEEE 2000 International Geoscience and Remote Sensing Symposium, 2000,1 (1): 74-76
  • 10采集与处理,2000,15(3):351-354.

共引文献39

同被引文献18

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部