摘要
为了获得高质量的手掌静脉图像,设计了一种能快速采集到高质量掌静脉图像的多光谱自适应采集系统方法及装置。通过研究高质量静脉图像对应的近红外光强度配比区域,结合图像质量评价模型和布谷鸟搜索(CS)算法搜索策略,构建出760,850,940 nm三种混合近红外光强自适应配比模型。该模型能够快速调优混合光源强度配比,以获得复杂场景下高质量手掌静脉图像。实验结果表明:CS算法模型及系统方案能快速有效地适应不同人群手掌静脉特征,在保证图像质量的前提下提供快速有效的光源配比方案,为在线手掌静脉识别的后续处理提供了良好的基础。
In order to obtain high-quality palm vein image,a multi-spectral adaptive acquisition system method and device that can rapidly acquire high-quality palm vein images is designed.By studying on near-infrared light intensity matching area corresponding to high-quality vein images,combined with image quality assessment model and cuckoo search(CS)algorithm search strategy,three mixed near-infrared intensity adaptive matching models at760 nm,850 nm and 940 nm are constructed.The model can quickly tune the intensity ratio of the hybrid light source to obtain high-quality palm vein images in complex scenes.The experimental results show that the CS algorithm model and system scheme can quickly and effectively adapt to the characteristics of palm veins in different populations,and provide a fast and effective light source matching scheme under the premise of ensuring image quality,which provides a good basis for the follow-up processing of online palm vein recognition.
作者
陶静静
姚善化
孙熊伟
曾新华
朱泽德
TAO Jing-jing;YAO Shan-hua;SUN Xiong-wei;ZENG Xin-hua;ZHU Ze-de(School of Electrical and Information Engineering,Anhui University of Science & Technology,Huai' nan 2320005 China;Chinese Academy of Science( Hefei) Institude of Technology Innovation,Hefei 230000,China)
出处
《传感器与微系统》
CSCD
2019年第3期53-56,共4页
Transducer and Microsystem Technologies
基金
国家重点研发计划资助项目(2018YFC0831102)
国家自然科学基金资助项目(61475163)
安徽省自然科学基金资助项目(1608085QF127)
关键词
手掌静脉
多光谱
快速配比
高质量
自适应
palm vein
multi-spectrum
rapid ratio
high quality
self-adaptive