摘要
文本情感分析是目前网络环境下舆情监控、服务评价及满意度分析等领域的重要任务,一些基于深度神经网络的方法已被用于此类任务。规模庞大的深度神经网络模型结构赋予了深度学习模型强大的非线性拟合的能力,大规模的数据资源为训练这样大规模的模型并保证其泛化能力提供了可能性。然而,在实际应用中,深度模型的时间和空间开销仍然制约着这些方法的落地。针对上述问题,提出一种融合群稀疏与排他性稀疏正则项的神经网络压缩情感分析方法,首先分别构建循环-卷积神经网路与卷积-循环神经网络,通过门控单元融合两种网络组成的分析模型,在模型中引入群稀疏与排他性稀疏正则项,剪除冗余神经元或链接,压缩模型规模。在不同数据集上的实验结果验证了本文方法的有效性。
In the current internet environment,text sentiment analysis is one of the most important tasks in the field of public opinion monitoring and analysis of customer service satisfaction.Deep network models offer a great improvement over the traditional methods in sentiment analysis tasks,since large-scale networks enable a deep model to fit nonlinear data effectively and large-scale data resources provide the possibility to train such a large-scale model and guarantee its generalization ability.However,the time and space costs of the deep model still restrict its application.This paper proposes a neural network compressed sentiment analysis method that combines group spar-sity and exclusive sparsity regularization.We first construct an analysis model composed of RCNN and C-RNN which is integrated by a gate unit.Group sparsity and exclusive sparsity regularization are then introduced in order to make the model compressed.Experiments on different data sets verify the effectiveness of our method.
作者
黄磊
杜昌顺
HUANG Lei;DU ChangShun(School of Economics and Management,Beijing Jiaotong University,Beijing 100044,China)
出处
《北京化工大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第2期103-112,共10页
Journal of Beijing University of Chemical Technology(Natural Science Edition)
关键词
情感分析
卷积神经网络
循环神经网络
门控单元
模型压缩
sentiment analysis
convolutional neural network
recurrent neural network
gate unit
model compression