期刊文献+

Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering 被引量:1

原文传递
导出
摘要 Plants have been used for medicinal purposes for thousands of years but they are still finding new uses in modem times. For example, Elaeagnus angustifolia (EA) is a medicinal herb with antinociceptive, anti-inflammatory, antibacterial and antioxidant properties and it is widely used in the treatment of rheumatoid arthritis and osteoarthritis. EA extract was loaded onto poly(ε-caprolactone)- poly(ethylene glycol)-poly(ε-caprolactone)(PCLPEG-PCL/EA) nanofibers and their potential applications for bone tissue engineering were studied. The morphology and chemical properties of the fibers were evaluated using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, contact angle measurements and mechanical tests. All the samples had bead-free morphologies with average diameters ranging from 100 to 200 nm. The response of human cells to the PCL-PEGPCL/ EA nanofibers was evaluated using human dental pulp stem cells (hDPSCs). The hDPSCs had better adhesion and proliferation capacity on the EA loaded nanofibers than on the pristine PCL-PEG?PCL nanofibers. An alizarin red S assay and the alkaline phosphatase activity confirmed that the nanofibrous scaffolds induced osteoblastic performance in the hDPSCs. The quantitative real time polymerase chain reaction results confirmed that the EA loaded nanofibrous scaffolds had significantly upregulated gene expression correlating to osteogenic differentiation. These results suggest that PCL-PEG-PCL/ EA nanofibers might have potential applications for bone tissue engineering.
出处 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2019年第1期108-119,共12页 化学科学与工程前沿(英文版)
  • 相关文献

参考文献3

共引文献21

同被引文献5

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部