期刊文献+

P2P网贷违约人是否具有区域性特征——来自湖南省的例证 被引量:1

Whether the Network Loan Defaulters Have Regional Characteristics——An Evidence from Hunan Province
下载PDF
导出
摘要 借助网络爬虫技术手段获取"人人贷"平台上借款人的各项信息,提取两个样本:分为全国随机样本和湖南省随机样本,构建二元Logit回归模型,分析其中对违约率有显著影响的变量.研究表明,负债收入比、借款期限、学历、房产、房贷、描述指数对违约行为有负向影响,而借款利率、车产、认证个数对借款者违约行为有正向影响.同时,通过对两个样本最终回归模型的比较,发现湖南省违约人特征与全国随机样本中体现的违约人特征基本一致,但其中较为特殊的是,在湖南拥有房产和车产不能作为网络借款人履约能力提升的标志. This paper obtains the information of the borrowers on the "renrendai"net loan platform with the help of the web crawler technology佲 and extracts two samples丗 the random samples of the whole country and the random samples of Hunan province. A binary Logit regression model is built to analyze the variables which have significant influence on the default rate. The study shows that the debt-to-income ratio, the maturity of the loan, the educational background, the property佲 the mortgage and the description index have a negative impact on the default behavior, while the interest rate of the loan, owning cars and the number of certification have a positive impact on the default behavior of the borrowers. At the same time, through the comparison of the final regression model of two samples, it is found that the characteristics of the defaulters in Hunan province is basically consistent with the random samples of the whole country佲 but e*specially the ownership of real estate and car can not help to improve the performance of network borrowers in Hunan.
作者 吴楠 WU Nan(The Party School Directly under Hunan Provincial, Economics Teaching and Research Section ,Changsha , Hunan 410011,China)
出处 《经济数学》 2019年第1期9-18,共10页 Journal of Quantitative Economics
基金 湖南省社会科学界联合会智库课题资助(ZK2018013)
关键词 P2P网络借贷平台 地域特点 违约人特征 P2P net loan platform regional characteristics characteristics of defaulter
  • 相关文献

二级参考文献77

  • 1李钧.P2P借贷:性质、风险与监管[J].金融发展评论,2013(3):35-50. 被引量:84
  • 2田春岐,邹仕洪,田慧蓉,王文东,程时端.一种基于信誉和风险评价的分布式P2P信任模型[J].电子与信息学报,2007,29(7):1628-1632. 被引量:47
  • 3Lin, M., N. R. Prabhala, and S. Viswanathan. Judging Borrowers by the Company They Keep: Social Networks and Adverse Selection in Online Peer-to-Peer Lending[R]. 2009.
  • 4Klafft, M. Peer to Peer Lending: Auctioning Mirco Credits over the lnternet [R]. Proceedings of the 2008 International Conference on Information Systems, Technology and Management(ICISTM 08), 2008.
  • 5Herzenstein, M., R. L. Andrews, U. M. Dholakia, and E. Lyandres. The Democratization of Personal Consumer Loans? Determinants of Success in Online Peer-to-Peer Lending Communities[R]. 2008.
  • 6Iyer, R., A. I. Khwaja, E. F. P. Luttmer, and K. Shue. Screening in New Credit Markets: Can Individual Lenders Infer Borrower Credit Worthiness in Peer-to-Peer Lending[R]. 2010.
  • 7Ceyhan, S., X.L. Shi, and L. Jure. Dynamics of Bidding in a P2P Lending Service: Effects of Herding and Predicting Loan Success[J]. Social Network Analysis, 2011 ,(2).
  • 8Berkovich, E. Search and Herding Effects in Peer-to-Peer Lending: Evidence from Prosper.Com [J]. Annals of Finance, 2011,7(3).
  • 9Lee. E., and B. Lee. Herding Behavior in Online P2P Lending: An Empirical Investigation [J]. Electronic Commerce Research and Applications, 2012, (11).
  • 10Davis, K.E., and A. Gelpern. Peer-to-Peer Financing for Development Regulating the Intermediaries[R]. 2010.

共引文献500

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部