期刊文献+

遗传算法在消火栓供水优化问题中的应用 被引量:2

Optimization of hydrant water supply based on genetic algorithm
下载PDF
导出
摘要 基于现有市政给水管网和灭火作战指挥原则,构建了消火栓供水多目标优化模型。利用MATLAB编程实现遗传算法,同时调用EPANET软件对给水管网模型进行水力平差计算适应度,迭代进化求得优化模型的最优解,科学选取战时所需要的消火栓,使其既能快速出水,又能确保供水稳定不中断。以华南某行政区为例计算,结果表明,利用该方法选取消火栓,供水的可靠性和经济性可达到最佳。 Based on the existing municipal water supply pipe network and the principle of firefighting command, a multi-objective optimization model of fire hydrant water supply was built. The genetic algorithm was programmed by MATLAB,and EPANET software was used to calculate the adaptability of hydraulic adjustment of the waler supply pipe network model. After iterative evolution the opiimum solution was golten, so that the hydrants needed for firefighting can be selected scientifically, which can not only enable the discharge of water quickly, but also ensure that the hydrant water supply is stable and uninlerrupted.Taking a certain administrative region of south Chirm as an example, the model was applied, and the result showed that the reliability and economy of Miwater supply can be optimized by using this method.
作者 王玮玮 钟少波 WANG Wei-wei;ZHONG Shao-bo(Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;Shanghai Yangpu Fire Detachment, Shanghai 200093, China;Beijing Research Center of Urban System Engineering, Beijing,100089, China;Beijing Key Laboratory of Operation Safety of Gas, Heating and Underground Pipelines, Beijing 100089, China)
出处 《消防科学与技术》 CAS 北大核心 2019年第2期240-243,共4页 Fire Science and Technology
基金 国家"十二五"科技支撑计划项目(2015BAK10B01)
关键词 消火栓 消防供水 多目标优化 遗传算法 水力计算 fire hydrant fire waler supply multi-objcctive optimization genetic algorithm hydraulic calculalion
  • 相关文献

参考文献5

二级参考文献55

  • 1王振,刘茂.应用区间层次分析法(IAHP)研究高层建筑火灾安全因素[J].安全与环境学报,2006,6(1):12-15. 被引量:65
  • 2公安部消防局.消防灭火救援[M].北京:中国人民公安大学出版社,2002..
  • 3Pareto V. Cours d'economies politique, volume Ⅰ and Ⅱ [M]. F Rouge, Lausanne, 1896
  • 4Rosenberg R S. Simulation of genetic populations with biochemical properties [D]. University of Michigan,Ann Harbor, Michigan, 1967
  • 5Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [A]. Genetic Algorithms and their Applications: Proceeding of the First International Conference on Genetic Algorithms [C], Lawrence Erlbaum, 1985. 93~ 100
  • 6Veldhuizen D A V, Lamont G B. Multiobjective evolutionary algorithm research: a history and analysis [R].TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright Patterson AFB, OH,USA, 1998
  • 7Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: formulation, discussion and generation [A]. Forrest S. Proceedings of the Fifth International Conference on Genetic Algorithms [C], SanMateo, California, University of Illinois at Urbana Champaign, Morgan Kaufman Publishers, 1993. 416~423
  • 8Srinivas N, Kalyanmoy D. Multiobjective optimization using nondominated sorting in genetic algorithms [J].Evolutionary Computation, 1994, 2(3): 221~248
  • 9Horn J, Nafpliotis N. Multiobjective optimization using the Riched Pareto genetic algorithm [R]. Technical Report IlliGAL Report 93005, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 1993
  • 10Lis J, Eiben A E. A multi-sexual genetic algorithm for multi-objective optimization [A]. Fukuda T, Furuhashi T. Proceedings of the 1996 International Conference on Evolutionary Computation, IEEE [C], Nagoya, Japan,1996. 59~64

共引文献2299

同被引文献14

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部