期刊文献+

一种基于光流的行人阴影检测与跟踪

Pedestrian Shadow Detection and Tracking Based on Optical Flow
下载PDF
导出
摘要 提出一种基于光流和机器学习的行人阴影检测与跟踪算法。算法假设初始帧的阴影边缘已知,首先利用从已知结果中提取的边缘信息特征对RF(随机森林)模型进行训练,然后在对前后两帧进行光流跟踪的同时找出误差较大的点,然后利用训练好的RF模型从邻域Canny获选边缘点中识别符合阴影特征的点。由于视点移动可能会带来的有新场景进入画面的问题,采用动态更新RF的方法。最后,对于仍可能存在的阴影边缘断裂不连续或者错误分类的情况,可以使用一些方法进行补全和修正。实验结果表明,该算法可以准确地检测和跟踪移动视点下视频中运动人体的投射阴影。 Proposes a pedestrian shadow detection and tracking algorithm based on optical flow and machine learning. The algorithm assumes that the shadow edges of the initial frame are known. Firstly, the RF (random forest) model is trained by using the edge information features extracted from the known results. Then, the points with large errors are found while tracking the optical flow of the two frames. Then, the trained RF model is used to identify the points with shadow features from the selected edge points of neighborhood Canny. Because of the problem that new scenes may enter the screen due to viewpoint movement, we adopt the method of dynamic updating RF. Finally, some methods can be used to complete and correct the discontinuous or wrong classification of shadow edge breaks that may still exist. The experimental results show that the algorithm can accurately detect and track the projected shadow of moving human body in video from moving viewpoint.
作者 张友鹏 ZHANG You-peng(National Key Laboratory of Fundamental Science on Synthetic Vision,Sichuan University,Chengdu 610065)
出处 《现代计算机》 2019年第8期53-57,共5页 Modern Computer
关键词 阴影检测 移动视点 机器学习 Shadow Detection Mobile View Machine Learning
  • 相关文献

参考文献1

二级参考文献18

  • 1Shafer S A. Using color to separate reflection components [J]. Color Research & Applications, 1985, 10(4): 210-218.
  • 2Maxwell B, Friedhoff R, Smith C. A bi-illuminant dichromatic reflection model forunderstanding images [C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA: IEEE Computer Society, 2008: 1-8.
  • 3Huang J B, Chu S C. Moving cast shadow detection using physics-based features [C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE Computer Society, 2009: 2310-2317.
  • 4Nadimi S, Bhanu B. Physical models for moving shadow and object detection in video [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1079-1087.
  • 5Cucchiara R, Grana C, Piccardi M, et al. Detecting moving objects, ghosts, and shadows in video streams [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1337-1342.
  • 6Chen C T, Su C Y, Kao W C. An enhanced segmentation on vision-based shadow removal for vehicle detection [C]//Proceedings of International Conference on Green Circuits and Systems. Shanghai, China: IEEE Computer Society, 2010: 679-682.
  • 7Sanin A, Sanderson C, Lovell B C. Improved shadow removal for robust person tracking in surveillance scenarios [C]//Proceedings of International Conference on Pattern Recognition. Istanbul, Turkey: IEEE Computer Society, 2010: 23-26.
  • 8Xu D, Li X, Liu Z, et al. Cast shadow detection in video segmentation [J]. Pattern Recognition Letters, 2005, 26(1): 91-99.
  • 9Sanin A, Sanderson C, Lovell B C. Shadow detection: a survey and comparative evaluation of recent methods [J]. Pattern Recognition, 2012, 45(4): 1684-1695.
  • 10Stander J, Mech R, Osterm-ann J. Detection of moving cast shadows for object segmentation [J]. IEEE Transactions on Multimedia, 1999, 1(1): 65-76.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部