期刊文献+

Entropy generation analysis of natural convective radiative second grade nanofluid flow between parallel plates in a porous medium 被引量:2

Entropy generation analysis of natural convective radiative second grade nanofluid flow between parallel plates in a porous medium
下载PDF
导出
摘要 The present article explores the entropy generation of radiating viscoelastic second grade nanofluid in a porous channel confined between two parallel plates. The boundaries of the plates are maintained at distinct temperatures and concentrations while the fluid is being sucked and injected periodically through upper and lower plates. The buoyancy forces, thermophoresis and Brownian motion are also considered due to the temperature and concentration differences across the channel. The system of governing partial differential equations has been transferred into a system of ordinary differential equations(ODEs) by appropriate similarity relations, and a shooting method with the fourth-order Runge-Kutta scheme is used for the solutions. The results are analyzed in detail for dimensionless velocity components. The temperature, concentration distributions, the entropy generation number, and the Bejan number corresponding to various fluid and geometric parameters are shown graphically. The skin friction, heat and mass transfer rates are presented in the form of tables. It is noticed that the temperature profile of the fluid is enhanced with the Brownian motion, whereas the concentration profile of the fluid is decreased with the thermophoresis parameter, and the entropy and Bejan numbers exhibit the opposite trend for the suction and injection ratio. The present article explores the entropy generation of radiating viscoelastic second grade nanofluid in a porous channel confined between two parallel plates. The boundaries of the plates are maintained at distinct temperatures and concentrations while the fluid is being sucked and injected periodically through upper and lower plates. The buoyancy forces, thermophoresis and Brownian motion are also considered due to the temperature and concentration differences across the channel. The system of governing partial differential equations has been transferred into a system of ordinary differential equations(ODEs) by appropriate similarity relations, and a shooting method with the fourth-order Runge-Kutta scheme is used for the solutions. The results are analyzed in detail for dimensionless velocity components. The temperature, concentration distributions, the entropy generation number, and the Bejan number corresponding to various fluid and geometric parameters are shown graphically. The skin friction, heat and mass transfer rates are presented in the form of tables. It is noticed that the temperature profile of the fluid is enhanced with the Brownian motion, whereas the concentration profile of the fluid is decreased with the thermophoresis parameter, and the entropy and Bejan numbers exhibit the opposite trend for the suction and injection ratio.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第4期481-498,共18页 应用数学和力学(英文版)
基金 supported by the Senior Research Fellowship of the Defence Research and Development Organization(No.DIAT/F/Acad(Ph.D.)/1613/15-52-12)
关键词 NANOFLUID THERMOPHORESIS BROWNIAN motion SHOOTING method thermal radiation nanofluid thermophoresis Brownian motion shooting method thermal radiation
  • 相关文献

同被引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部